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1. Superior properties of metal halide perovskites

High-performance for 

➢Photovoltaics (solar cells )

➢LED, lasing, x-ray detectors, detectors … 

Perovskite photovoltaics advance quickly, 

due to 

• Superior optoelectronic properties

• Established theory, technology, materials

MHPs have unique soft lattice and mixed 

ionic-electronic conduction



High-performance of perovskites are usually attributed to superior properties

long carrier lifetime, long diffusion length, defect tolerance, small bonding energy, 

high absorption, … ???          Not sufficient!  Not provide physics!

What makes perovskites so different? 

What is physical origin for MHPs’ unique 

optoelectronic properties? 

2. Anomalous phenomena: conflict to current semiconductor theory



Long carrier lifetime !  ? 

Previously proposed origins for long carrier lifetime/diffusion length：

➢ delayed fluorescence or indirect bandgap transition

➢ formation of polaron and thus screening

➢ giant Rashba effect

➢ ferroelectric domains

➢ photon recycling

Obviously contradict to some 

observations ➔ No consensus

1. Much longer than prediction by Langevin theory

2. Significantly extension under continuous excitation

3. Relevant to the dynamic range of system 



illumination-induced fluorescence enhancement 
(photobrightening, defect curing/defect healing)
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Under continuous illumination PL 

efficiency increases and carrier 

lifetime increases

This is enhancement and reversible, 

excluding degradation /decomposition
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Ultraslow response in MHPs

mobile ions➔ detrimental 

(charge and defect effects)

Lattice ➔ beneficial 

(lattice, strain, polaron)

Ultraslow response ➔ relevant to lattice/strain and/or mobile ions     

➢ Hilde perovskites are soft lattice and exhibit mixed ionic-electronic conduction 

⚫ I-V Hysteresis 

⚫ Phase segregation

⚫ Fluorescence intermittency (blinking)

⚫ Fluorescence quenching

⚫ illumination-induced PL enhancement (photobrightening, defect curing/defect healing)

⚫ Defect tolerance

⚫ Memory effect (memoirist) 

⚫ upconversion fluorescence 

⚫ Persistent structure polarization….



Many effects stay in phenomenal description

Defect tolerance / dynamic defect tolerance 

long and variable carrier lifetime

photobrightening, defect curing/defect healing

Persistent structure polarization

Memory effect (memoirist) 

highly efficient single photon upconversion fluorescence 

Illumination induced transparency ……

Conflict to current theory！



3. Lattice energy reservoir (LER)

➢ Lattice energy reservoir (LER) are dynamic non-

uniformly localized nanodomains. Under light illumination,

phonon energy can be stored into LER and generate hot

LER (higher potential energy).

➢ Soft-lattice MHPs can deform/distort lattice thus

accumulate energy, forming hot LER.

➢ LER can form phonon cavity; the strain interface

significantly suppress thermal transport/dissipation ➔

ultralow thermal transport/energy leaking!

➢ When subgap electrons drift into the hot LER, they can be 

upconverted to the conduction band ➔ upconversion. 

Wen et al. Lattice Energy Reservoir in MHPs, Account of Materials Research, 2025 10.1021/accountsmr.5c00047

https://doi.org/10.1021/accountsmr.5c00047


Carrier dynamics in conventional semiconductor and LER-semiconductor 

conventional semiconductor LER-semiconductor

Energy micro-recycle for defect tolerance: 

phonon injection ➔ hot LER formation ➔

subgap carrier upconversion



Energy micro-recycle process in LER:   

• 1: phonon energy inject into LER 

(polaron)

• 2: energy storage as elastic 

potential energy then hot LER 

formation as phonon cavity

• 3: subgap carrier upconversion by 

multi-phonon absorption, driven by 

hot LER 

Hot phonon injection ➔ hot LER formation ➔ subgap carrier upconversion ➔ carrier in CB



LER’s physical effects

➢ slowed cooling by LA→LO upconversion due to 

suppressed thermal depletion thus high density LA 

phonon in LER

➢ significantly prolonged carrier lifetime, increased 

PL efficiency → dynamic defect tolerance

➢ Efficient single photon upconversion fluorescence 

➢ ultraslow phenomena  (second – hour) due to 

suppressed energy dissipation

Persistent structure/lattice polarization

Memory effect (memoirist)

Illumination induced transparency ….   

➔Fundamental mechanism for unique 

optoelectronic properties & high-

performance devices! 
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The physical effects of lattice energy

Comprehensively change phonon-carrier-lattice-mobile ion dynamics

Wen et al. Lattice Energy Reservoir in MHPs, Account of Materials Research, 2025



Slowed cooling of hot carriers – phonon bottleneck 

Acoustic–optical phonon up-conversion ➔ slowed thermalization

Yang et al. Nature Comm. 8, 14120 (2017)



LER’s physical effects 
➔ Increased PL efficiency, prolonged carrier 

lifetime and diffusion length
➔defect healing/curing, defect tolerance

Key dynamic processes:

⚫ Hot LER formation by 

lattice-phonon coupling 

under light illumination

⚫ Subgap carries are 

upconverted by hot LER 
(a) (b) 
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In addition to composition, 

fabrication quality, excitation 

parameters, detection system 

sensitivity also impact the carrier 

lifetime ➔ NOT intrinsic carrier 

lifetime! 



Analysis of reported energy loss and decay time

Nature Mater. 23, 391 (2024)

Measured carrier lifetime is relevant to

⚫ Measurement parameters: excitation fluence, wavelength

⚫ Dynamic range of detection system （sensitivity）

https://www.nature.com/nmat


Revisiting charge carrier recombinations

Including SRH, bimolecular and Auger recombinations  

𝑑𝑛

𝑑𝑡
= −𝐴𝑛 − 𝐵𝑛2 − 𝐶𝑛3

carrier lifetime is also variable during measurement! What 

meaning does the measured lifetime represent? It is not 

intrinsic carrier lifetime! 

The interpretation for TRPL and TAS needs to re-consider! 

Widely used equation: 

Essential assumption: 

(a) independent cycles of excitation-dissipation

(b) obtained PL decay curve by integrating many cycles 

(c) LER effect (lattice/strain) are ignored



Persistent photocurrent

Efficient anti-Stokes Upconversion PL

(no metal doping)

Ultraslow phenomena in MHPs

Nature Nanotech. 18, 357 (2023)

Wen, et al. Materials Today 2025

excitation

https://www.nature.com/nnano


Featured subgap absorption in perovskites

0 40 80 120 160 200

10
-1

10
0

Spin coating 

1.  405 nm pulse

2.  405nm + CW

3.  405 nm pulse

 

 

In
te

n
s

it
y

 (
a

. 
u

.)

Time (ns)

Memory of Carrier lifetime



A systematic discrepancy between the short circuit current in 
perovskite solar cells

Jsc,JV > Jsc,EQE ～4% 

Saliba et al. Nature Comm. 14, 5445 (2023)

https://www.nature.com/ncomms
https://www.nature.com/ncomms


Energy Loss and efficiency limit of solar cells 

Why > 70% solar energy waste in single 

junction solar cells:

• Loss1: hot phonon from hot carrier 

• Loss2: unabsorbed infrared

➔ efficiency is limited < 33%  Shockley-

Queisser limit

Ultrawide solar spectrum – fixed bandgap 

5. Lattice battery solar cell (LBSC)



aim to exceed Shockley-Queisser limitThird generation photovoltaics

Previously concepts: 

1. Tandem :

 Si-perovskite (>33%), perovskite-perovskite 

(>26%), ..progress recent years, also increase 

fabrication cost, stability is still challenging

2. Harvesting hot carrier 

hot carrier solar cells, Multi-exciton generation, 

singlet fission, (down conversion)

3. Harvesting subgap solar photons

Rare-metal doping upconversion, triplet fusion 

Intermediate state



New concept: Lattice battery solar cell (LBSC) 

– toward 70% efficiency in single layer

What is Lattice battery solar cell (LBSC)? 

synergistic work of lattice energy storage and electron-hole 

carriers - to achieve wide solar spectrum harvesting (UV-

NIR), which can simultaneously overcome the energy losses 

of hot phonon and sub-bandgap non-absorption in traditional 

solar cells

- theoretical efficiency of 70% >> SQ limit

EcoEnergy 2024/ece2.47

The Innovation Energy 2 (2025), 100092



Working principle of LBSC

Perovskite-NIR composite

• Perovskite-infrared composite is used as 

absorber in LBSC for harvesting full solar 

photon (UV to NIR).

• NIR photons are absorbed by NIR 

component, photogenerated electrons, then 

transfer to the subgap state of perovskite and 

are upconverted to the conduction band

• eventually output as electricity! 

Essential difference in solar to electricity:

Other solar cells: solar photon ➔ e, h ➔ electricity 

LBSC: solar photon ➔ 1 (e & h ➔ electricity)

➔ 2 (phonon injection and hot LER formation➔

NIR generated carrier transfer to subgap state and 

upconversion ➔ electricity) ➔ energy micro-

recycle process EcoEnergy 2024/ece2.47

The Innovation Energy 2 (2025), 100092



• High efficiency: harvest full 
spectral solar energy (UV to NIR). 
Loss1 and Loss2 are converted to 
electricity 

➔ 70% efficiency  

• High stability: Hot phonon 
energy is converted into 
electricity, avoiding heating 
absorber. 

LBSC will operate at lower 
temperature, significantly 
mitigate degradation 

Working processes of LBSC 



Advantages of LBSC

1. high efficiency: 

Theoretical efficiency > 70%

➢ Harvesting full spectral solar energy from UV to NIR, typically down

to 1 eV (1240 nm) 

➢ Intrinsically avoid two major losses: hot carrier and sub-bandgap non-

absorption

2. high stability
Hot phonon is stored into LER, rather than heating absorber, as 

electricity output, significantly decrease temperature (actually 

introduce a cooling mechanism)

3. low-cost fabrication: simple structure of single junction 

with low-cost solution fabrication



Summary for LER and LBSC

➢ LER can comprehensively change optoelectronic 
properties of MHPs ➔ fundamental origin for 
superior properties. LER define a new type of 
semiconductors.  

➢ LBSCs operate in a revolutionary mechanism, 
with high theoretical efficiency, high stability and 
low-cost fabrication, great promising for next 
generation solar cells

➢ A broadband solar energy harvesting strategy-
from UV to NIR, promising for solar energy 
applications: photovoltaics, photocatalysis, self-
powered detection, self-powered LED, …
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