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1. Superior properties of metal halide perovskites

MHPs have unique soft lattice and mixed
ionic-electronic conduction

High-performance for

» Photovoltaics (solar cells )

» LED, lasing, x-ray detectors, detectors "

* Superior optoelectronic properties
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Perovskite photovoltaics advance quickly,
due to

» Established theory, technology, materials
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2. Anomalous phenomena: conflict to current semiconductor theory

High-performance of perovskites are usually attributed to superior properties

long carrier lifetime, long diffusion length, defect tolerance, small bonding energy,
high absorption, ... 22? Not sufficient! Not provide physics!

What makes perovskites so different?

Defect Tolerant: MAPbI,

What is physical origin for MHPs’ unique 7 R
optoelectronic properties? \_// \ /




Long carrier lifetime ! ?

1. Much longer than prediction by Langevin theory
2. Significantly extension under continuous excitation
3. Relevant to the dynamic range of system

Previously proposed origins for long carrier lifetime/diffusion length -
» delayed fluorescence or indirect bandgap transition

» formation of polaron and thus screening

» giant Rashba effect Obviously contradict to some
> ferroelectric domains observations = No consensus

» photon recycling

Before illumination After illumination




illumination-induced fluorescence enhancement
(photobrightening, defect curing/defect healing)
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Under continuous illumination PL
efficiency increases and carrier
lifetime 1increases

This 1s enhancement and reversible,
excluding degradation /decomposition
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Ultraslow response in MHPs

Ultraslow response =@ relevant to lattice/strain and/or mobile ions
» Hilde perovskites are soft lattice and exhibit mixed ionic-electronic conduction

® [-V Hysteresis
® Phase segregation
® Fluorescence intermittency (blinking) mobile ions 9 detrimental

® Fluorescence quenching (C‘ h arge and defect eﬁects )

® illumination-induced PL enhancement (photobrightening, defect curing/defect healing)
® Defect tolerance
® Memory effect (memoirist)

® upconversion fluorescence Lattice = beneficial
® Persistent structure polarization.... (lam'ce strain, po laron )



Many effects stay in phenomenal description

Defect tolerance / dynamic defect tolerance
long and variable carrier lifetime
photobrightening, defect curing/defect healing
Persistent structure polarization

Memory effect (memoirist)

highly efficient single photon upconversion fluorescence

Hlumination induced transparency

Conflict to current theory !




3. Lattice energy reservoir (LER)
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hy = hotLER

> Lattice energy reservoir (LER) are dynamic non- |l A4 & dvd. .4 4
: : . : . C LER ; I
uniformly localized nanodomains. Under light illumination, | ‘ PED i g
phonon energy can be stored into LER and generate hot ‘ . ........... ph,%\ ...... - . .
LER (higher potential energy). 2 AW By m
(higher p zy) . &4 € ¢
» Soft-lattice MHPs can deform/distort lattice thus
accumulate energy, forming hot LER.
» LER can form phonon cavity; the strain interface AAA— E
significantly suppress thermal transport/dissipation =
ultralow thermal transport/energy leaking! hot LER
CB N

» When subgap electrons drift into the hot LER, they can be J\}\\/)\,)

upconverted to the conduction band =» upconversion.

VB
Wen et al. Lattice Energy Reservoir in MHPs, Account of Materials Research, 2025 10.1021/accountsmr.5c00047
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Carrier dynamics 1n conventional semiconductor and LER -semiconductor
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Energy micro-recycle for defect tolerance:
phonon injection =» hot LER formation =»
subgap carrier upconversion



Energy micro-recycle process in LER:

* 1: phonon energy inject into LER
(polaron)

* 2: energy storage as elastic
potential energy then hot LER
formation as phonon cavity

 3: subgap carrier upconversion by
multi-phonon absorption, driven by
hot LER

Hot phonon injection = hot LER formation = subgap carrier upconversion = carrier in CB



LER’s physical effects

Metal Halide Perovskites
fE Slowed cooling of hot carriers

> slowed cooling by LA->LO upconversion due to
suppressed thermal depletion thus high density LA
phonon in LER

)|

———;;;\ﬁ\d-i——

Long carrier diffusion length

Dynamic defect tolerance

Single photon upconversion

» significantly prolonged carrier lifetime, increased
PL efficiency = dynamic defect tolerance

Memory effect

Persistent structure polarization

Lattice Energy Reservoir { Photobrightening / defect curing

» Efficient single photon upconversion fluorescence

» ultraslow phenomena (second — hour) due to
suppressed energy dissipation

=>» Fundamental mechanism for unique
optoelectronic properties & high-
performance devices!

Persistent structure/lattice polarization
Memory effect (memoirist)
lllumination induced transparency ....



The physical effects of lattice energy

Comprehensively change phonon-carrier-lattice-mobile ion dynamics

?3 LA-LO ph.onon Subgap carrier
12> apeonversion upconversion
o Phonon injection
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Wen et al. Lattice Energy Reservoir in MHPs, Account of Materials Research, 2025
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Slowed cooling of hot carriers — phonon bottleneck

Acoustic—optical phonon up-conversion = slowed thermalization
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LER’s physical effects

=» Increased PL efficiency, prolonged carrier
lifetime and diffusion length
=» defect healing/curing, defect tolerance
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Key dynamic processes:

® Hot LER formation by
lattice-phonon coupling
under light illumination

® Subgap carries are
upconverted by hot LER

In addition to composition,
fabrication quality, excitation
parameters, detection system
sensitivity also impact the carrier
lifetime =» NOT intrinsic carrier
lifetime!



Measured carrier lifetime is relevant to Shallow defects and variable photoluminescence decay
times up to 280 usin triple-cation perovskites

. Measurement parameters: excitation ﬂuence, Wavelength Ye Yuan, Genghua Yan E, Chris Dreessen, Toby Rudolph, Markus Hilsbeck, Benjamin Klingebiel, Jiajiu

Ye, Uwe Rau & Thomas Kirchartz &

® Dynamic range Of detection System (Sensitivity) Nature Materials 23, 391-397 (2024) | Cite this article
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https://www.nature.com/nmat

Revisiting charge carrier recombinations

Widely used equation: % — —An — Bn? — Cn3

Nanoplatelet Including SRH, bimolecular and Auger recombinations

Essential assumption:

(a) independent cycles of excitation-dissipation

(b) obtained PL decay curve by integrating many cycles
(c) LER effect (lattice/strain) are ignored

@9 @ @

® Q9 Qe carrier lifetime is also variable during measurement! What
@@ @ meaning does the measured lifetime represent? It is not

@ @ g9 intrinsic carrier lifetime!

@ Q@ 9O @

The interpretation for TRPL and TAS needs to re-consider!



Ultraslow phenomena in MHPs

Persistent photocurrent &

Efficient anti-Stokes Upconversion PL
(no metal doping)

Below gap
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Featured subgap absorption in perovskites
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A systematic discrepancy between the short circuit current in

perovskite solar cells
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5. Lattice battery solar cell (LBSC)

Energy Loss and efficiency limit of solar cells

Why > 70% solar energy waste in single

Ultrawide solar spectrum — fixed bandgap
junction solar cells:

* Lossl: hot phonon from hot carrier Solar spectrum

. Shockley-Queisser limit
* Loss2: unabsorbed infrared d
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Third generation photovoltaics aim to exceed Shockley-Queisser limit

Previously concepts:

1. Tandem :

o
L

Si-perovskite (>33%), perovskite-perovskite

>269 1
(>26%), ..progress recent years, also increase sy

—w Perovskite/Si Tandem Device
—ea— Semi-transparent Device
—a— Silicon

Current density (mNcm’)
8
L

5

fabrication cost, stability is still challenging

T ¥ T Y T Y
05 1.0 15 2.0

e
=)

2. Harvesting hot carrier
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New concept: Lattice battery solar cell (LBSC)
— toward 70% efficiency 1n single layer

What is Lattice battery solar cell (LBSC)?

synergistic work of lattice energy storage and electron-hole
carriers - to achieve wide solar spectrum harvesting (UV-
NIR), which can simultaneously overcome the energy losses
of hot phonon and sub-bandgap non-absorption in traditional

solar cells

= ©

Perovskite - NIR
compositie

Electrode
Electrode

(hy Cho
=

- theoretical efficiency of 70% >> SQ limit

EcoEnergy 2024/ece2.47
The Innovation Energy 2 (2025), 100092



Working principle of LBSC

* Perovskite-infrared composite is used as
absorber in LBSC for harvesting full solar
photon (UV to NIR).

* NIR photons are absorbed by NIR
component, photogenerated electrons, then
transfer to the subgap state of perovskite and
are upconverted to the conduction band

» eventually output as electricity!

Essential difference in solar to electricity:
Other solar cells: solar photon =» e, h =» electricity
LBSC: solar photon =» 1 (¢ & h = electricity)

=» 2 (phonon injection and hot LER formation=>»
NIR generated carrier transfer to subgap state and
upconversion =¥ electricity) = energy micro-
recycle process

(wu) YIsudppABAL

Perovskite-NIR composite

Solar Spectrum

NIR

EcoEnergy 2024/ece2 .47
The Innovation Energy 2 (2025), 100092



Working processes of LBSC

E B R Hotphonun ) High efﬁCiency: harvest full
H"tci"‘”‘ers ‘emission " spectral solar energy (UV to NIR).
E Loss1 and Loss2 are converted to
g E electricity
8 - Carrier Llectron = 70% efficiency
Conduction Band extraction Output

of Perovskite Terten

* High stability: Hot phonon
energy is converted into
electricity, avoiding heating
absorber.

LBSC will operate at lower
temperature, significantly
mitigate degradation
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Advantages of LBSC
1. high effiCiency gsolars"“""m Wf* phonon th‘tpiut
i

VW 1
Theoretical efficiency > 70% N o
» Harvesting full spectral solar energy from UV to NIR, typically down e }
LER

to 1 eV (1240 nm) \r)r” "~

(wu) yySudpaAe

» Intrinsically avoid two major losses: hot carrier and sub-bandgap non-
absorption

2. high stability

Hot phonon 1s stored into LER, rather than heating absorber, as
electricity output, significantly decrease temperature (actually
introduce a cooling mechanism)

Perovskite

3. low-cost fabrication: simple structure of single junction
with low-cost solution fabrication Sl S



Summary for LER and LBSC

» LER can comprehensively change optoelectronic
properties of MHPs =» fundamental origin for
superior properties. LER define a new type of E&_/ ergy
semiconductors. ‘

» LBSCs operate in a revolutionary mechanism,
with high theoretical efficiency, high stability and
low-cost fabrication, great promising for next
generation solar cells

» A broadband solar energy harvesting strategy-
from UV to NIR, promising for solar energy
applications: photovoltalcs photocatalys1s self-
powered detection, self-powered LED, .
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