

UNSW Seminar, 8.11.2024

Susan Schorr

Structural disorder in photovoltaic absorber materials

Helmholtz-Zentrum Berlin für Materialien und Energie, Department Structure and Dynamics of Energy Materials, Germany Freie Universität Berlin, Institute of Geological Sciences, Germany

Helmholtz Association in Germany

The Helmholtz Association is one of the large research associations in Germany, contributing to solving grand challenges facing society, science and industry by conducting top-rate research in the fields of Aeronautics, Space and Transport; Earth and Environment; Energy; Health; Matter; and Information.

- 18 legally independent Research Centers across Germany
- centers design and maintain numerous powerful large-scale facilities
- 46.000 employees
- annual budget of 6 billion Euros

Helmholtz-Zentrum Berlin fuer Materialien und Energie … HZB large scale faciliy → synchrotron radiation faciliy BESSYII

Synthesis of Photovoltaic Absorber Materials

- Synthesis/growth of multinary compound semiconductors (chalcogenides, nitrides, metal halides)
- New energy materials are also synthesized as reference materials and made available to our cooperation partners
- Advanced structural and optical characterisation
- Advanced structural characterisation using large scale facilites (synchrotron X-rays, neutrons)

Christiane Stephan-Scherb in the powder synthesis lab

Novel semiconductors with non-toxic, abundant constituents and long-time stability

- wide gap chalcogenides
- ternary nitrides
- hybride halide perovskites
- Inorganic halide perovskites
- chalcogenide perovskites
- chalcohalides

 \rightarrow powder, single crystals, polycrstalline thin films

Cu₂ZnSiSe₄ single crystal

Useful defects

- one focus of our research is on structural disorder, particularly on point defects
- these defects have a major influence on the properties and efficiency of a thin-film solar cell

Advanced analytic for optoelectronic properties

- decay kinetics from TRPL, pump-probe Thz spectroscopy
- doping density from Kelvin Probe, CV, TRPL
- quasi-Fermi Level Splitting from hyperspectral PL Imaging
- custom functional layers from Pulsed Laser Deposition (PLD) to grow materials libraries

Thomas Unold discussing in the thin film lab

→ combinatorial high-throughput materials optimization

Education of young scientists

PhD student Elisa Valle Rios at the Electron Microprobe

- teaching at the Freie Universitaet Berlin
- teaching at international schools NEXTGENPV School Roentgen-Angstroem Cluster School ANSTO Neutron Training Course
- organize and teach the X-ray Diffraction School and the Rietveld School at HZB's X-Ray CoreLab (for PhD students)
- supervision of MSc student
- supervision of PhD students

Galina Gurieva teaching in a high school seminar

Head of department: Prof. Dr. Susan Schorr

Professor at the Freien Universität Berlin, Institute of Geological Sciences

we run the X-Ray CoreLab, a central facility of HZB

... about 27 scientists, PhD students, technicians

HZB Helmholtz

What is structural disorder?

crystalline material ... 3-dimensional periodic arrangement of atoms/ions/...

But this is the ideal world!

... in the real world \rightarrow defects \rightarrow real structure

Why structural disorder is important?

The properties of crystalline semiconductors are mainly due to the presence of *defects inside the crystal structure*.

Managing their influence on electronic properties is critical for high performance across a range of technologies, including PV.

Of particular importance are point defects.

First of all we have to understand them – their structural origin, their concentrations and how this depends on chemical composition etc.

Defects play a crucial role

Structural perception of intrinsic point defects

\Rightarrow point defects change significantly the scattering cross section σ_{coh} of the cation structural sites

scattering cross section σ_{scat} is a hypothetical area which describes the likelihood of X-rays / neutrons being scattered by an atom / nucleous

Average neutron scattering analysis method

S. R. Hall et al., Can. Mineral. 16 (1978) 131

Schorr et al. in: Advanced characterization techniques for thin film solar cells, Wiley, 2016

14

HZB Helmholtz Zentrum Berlin

Experimental determination of intrinsic point defects (type & concentr.)

Average neutron scattering length analysis method

Schorr et al. in: Advanced characterization techniques for thin film solar cells, Wiley, 2016

pre-requesit → determination of **chemical composition** of quaternary phase by **WDX** spectroscopy

→ homogeneous powder sample

cation distribution model

HZB Helmholtz Zentrum Berlin

simultaneous Rietveld analysis of diffraction data (X-ray & neutron) site occupancy factors (SOF)

average neutron scattering length analysis

minimizing the difference between \bar{b}^{exp} and \bar{b}^{calc} by varying the cation distribution

intrinsic point defects

- type
- concentration (quantitative!)

Our experimental strategy: systematic investigation of materials properties HZB Helmholtz Zentrum Berlin

solid state reaction of the elements in closed silica tubes (750 – 950°C)

chemical analysis

WDX spectroscopy (calibrated system using standards)

BSE picture

grey – grains black - epoxy

hv.eV

1.5 1.6 1.7

(i) Cu-Zn disorder in kesterite-type materials

(ii) off-stoichiometry in kesterite-type materials

(iii) off-stoichiometry in quaternary chalcogenides – "kesterite-derived" materials

(iv) structural disorder in ternary nitrides

(v) Structural disorder hybrid halide perovskites?

Cu/Zn disorder in kesterite-type materials: discovered by neutron diffraction HZB Helmholtz Zentrum Berlin

The Cu/Zn order – disorder phase transition

order-disorder transition described

the ratio of two Raman peaks

 $Q = I(m_{2A})/I(m_{3A})$

qualitatively by

Lattice parameter obtained by *in-situ* synchrotron X-ray diffraction (ESRF) → first hint for a change in cation distribution

order-disorder transition described quantitatively by the site occupancy of 2c and 2d sites

 $T_{c}(CTZSe) \cong 190^{\circ}C$

19

Correlation of Cu/Zn disorder and optoelectronic properties

HZB Helmholtz Zentrum Berlin

Li et al., npj Flexible Electronics 16 (2023)

Technology development: low temperature annealing (T < T_c) as <u>post-deposition treatment of the</u> solar absorber \rightarrow decrease of Cu/Zn disorder

Is there a possibility to avoid Cu/Zn disorder?

(i) Cu-Zn disorder in kesterite-type materials

(ii) off-stoichiometry in kesterite-type materials

(iii) off-stoichiometry in quaternary chalcogenides – "kesterite-derived" materials

(iv) structural disorder in ternary nitrides

(v) Structural disorder hybrid halide perovskites?

highest efficiency in CZTS,Se-based solar cells → Cu-poor/Zn-rich composition

Physica Status Solidi a 215 (2018) 1700957

Off-Stoichiometry

ORIGINAL PAPER

Cu2ZnSnSe4: How Far Does Off-Stoichiometry Go?

Galina Gurieva,* Rafael Ferreira, Philipp Knoll, and Susan Schorr

Model to describe off-stoichiometry

→ off-stoichiometry type model

correlates chemical composition and point defects

- off-stoichiometry types A, B, C, D Lafond et al., Z. Anorg. Allg. Chem. 638 (2012) 2571
- off-stoichiometry types E, F, G, H, I, J, K, L

Gurieva et al., Journal fo Applied Physics 123 (2018) 161519 Schorr et al., J. Physics: Energy 2 (2020) 012002

Flexibility of the crystal structure and off-stoichiometry

HZB Helmholtz Zentrum Berlin

Kesterite-type structure is very flexible and can stabilize point defects (vacancies, anti sites, interstitials)

off-stoichiometry relations

Cu/(Zn + Sn) < 1	Zn/Sn > 1
Cu/(Zn + Sn) < 1	Zn/Sn < 1
Cu/(Zn + Sn) > 1	Zn/Sn > 1
Cu/(Zn + Sn) > 1	Zn/Sn < 1

Example: point defects in off-stoichiometric Cu₂ZnGeSe₄

HZB Helmholtz Zentrum Berlin

R. Gunder et al., Cryst. Eng. Comm 20 (2018) 1491 ... cover picture!

Is there any "sweet" spot for absorber composition?

HZB Helmholtz Zentrum Berlin

0³ counts/s

0³ counts/s

compositional variations of the absorber layer in the solar cell cause → variations in type and concentration of point defects

- → band gap fluctuations
 - \rightarrow electrostatic potential fluctuations \rightarrow decrease V_{oc}

S. Schorr and C. Weidenthaler (Eds.), Crystallography in Materials Research, De Gruyter 2021

areal world example ... composition of a CZTSe absorber layer (nanoXRF @ESRF)

Schöppe, ..., Saucedo, Schorr, Schnohr et al., Journal of Applied Physics 110 (2017) 043901

Monograin solar cells – correlate structural disorder and device parameter

HZB Helmholtz Zentrum Berlin

G. Gurieva et al, Sol. En. Mat. Sol. Cells 248 (2022) 112009

(i) Cu-Zn disorder in kesterite-type materials

(ii) off-stoichiometry in kesterite-type materials

(iii) off-stoichiometry in quaternary chalcogenides – "kesterite-derived" materials

(iv) structural disorder in ternary nitrides

(v) Structural disorder hybrid halide perovskites?

Quaternary chalcogenide semiconductors ... , kesterite-derived" materials HZB Helmholtz Zentrum Berlin

increase of distortion and tilting of the anion tetrahedra

symmetry decreases

Cu/B^{II} disorder – Kesterite vs. Stannite structure

HZB Helmholtz Zentrum Berlin

CZTS: Schorr et al., Europ. J. Mineral. 19 (2007) 65. CZTSe: Schorr et al., Sol En Mat Sol Cells 95 (2011) 1482. CZGeSe: Gurieva et al., J. Phys. Chem. Solids 99 (2016) 100.

Cation and anion alloying: changes in the crystal structure

HZB Helmholtz Zentrum Berlin

Cu_{Mn} & Mn_{Cu} in Stannite-type Cu₂MnSnSe₄ and Cu₂MnSnSe₄ ...

HZB Helmholtz Zentrum Berlin

Cation distribution on the 4d site (copper site) in off-stoichiometric Stannite-type Cu₂MnSnSe₄...

off-stoichiometric Kesterite-type Cu₂ZnSnS₄

 \rightarrow formation of Cu_{Mn} & Mn_{Cu} anti site defects, but with very low fractions (< 0.05)

→ Cu/Mn swapping

→ fractions of $Cu_{Zn} \& Zn_{Cu} >> 0.05$ Cu/Zn disorder

Band gap energy – covers range of 0.9 eV ... 2.1 eV

(i) Cu-Zn disorder in kesterite-type materials

(ii) off-stoichiometry in kesterite-type materials

(iii) off-stoichiometry in quaternary chalcogenides – "kesterite-derived" materials

(iv) structural disorder in ternary nitrides

(v) Structural disorder hybrid halide perovskites?

ternary nitrides (II-IV-N₂)

- earth-abundant alternatives to III-V compounds
- comparable band gap energies and lattice parameters

ZnSiN₂ / ZnGeN₂ / ZnSnN₂

- very efficient optical absorbers and emitters with a direct band gap
- device efficiency (ZnSnN₂, simulated) \rightarrow 22%*

Band gap tuning mechanisms

- chemical alloying
- cation order/disorder

Symmetry relations in ternary nitrides (e. g. ZnGeN₂)

Wurtzite-type structure P6₃mc

one cation site

$$2b\left(\frac{1}{3},\frac{2}{3},0\right)$$

Zn – Ge disorder

β-NaFeO₂-type structure $Pna2_1$ two cation sites 4a (x_1, y_1, z_1) 4a (x_2, y_2, z_2)

ordered distribution of Zn & Ge

Our approach for a systematic study of structural disorder in ZnGeN₂

HZB Helmholtz Zentrum Berlin

synthesis of powder samples

ammonolysis of oxide precursor (Zn_2GeO_4) at reaction temperatures 750 – 910°C

chemical analysis

- → XRF spectroscopy: Zn, Ge
- \rightarrow hot-gas extraction: N, O

synthesized material always contain a certain amount of oxygen

 $\rightarrow Zn_{1+x}Ge_{1-x}(N_{1-x}O_x)_2$

Breternitz et al., Phys. Stat. Solidi A 216 (2019) 1800885. Wang et al., Chemical Science (2021) DOI: 10.1039/d1sc00328c

Crystallization in the hexagonal Wurtzite structure or the orthorhombic β -NaFeO₂-type structure depends on oxygen content which can be tuned by the synthesis conditions (T, t)*

Cation distribution in $Zn_{1+x} Ge_{1-x} (N_{1-x}O_x)_2$

Cation distribution

determined by the analysis of SOF extracted by Rietveld refinement of **neutron diffraction data**

Zn_{Ge}: anti-site defect present due to Zn/Ge>1 → depends on oxygen content

Zn_{Ge}: anti-site defect present due to Zn/Ge>1 → depends on oxygen content

AND

 $Zn_{Ge}^* \& Ge_{Zn}^*$

anti-site defects as **intrinsic disorder**

→ (in)dependent on oxygen content?

Wang et al., J. Mat. Chem. C 12 (2024) 1124-1131

HZB Helmholtz Zentrum Berlin

general trend

increasing oxygen content G increasing intrinsic cation disorder

order parameter = 1 ... $Ge_{Zn}^* = 0$

order parameter = 0

 $Ge_{Ge} = Ge_{Zn}^*$ is fullfilled when half of the Ge occupies the Zn site

fully disordered

 $Ge = Ge_{Ge} + Ge_{Zn}^*$

- Ge content in $Zn_{1+x}Ge_{1-x}(N_{1-x}O_x)_2$
- → depends on oxygen content (Ge = 1 - x)
- Ge_{Zn}^* in $Zn_{1+x}Ge_{1-x}(N_{1-x}O_x)_2$
- \rightarrow independent on oxygen content

HZB Helmholtz Zentrum Berlin

- band gap energy E_g is influenced by oxygen content x AND intrinsic cation disorder BUT different
- $Zn_{1+x}Ge_{1-x}(N_{1-x}O_x)_2$ with almost no disorder (*) does not show the lowest oxygen content
- band gap energy E_g of full disordered $Zn_{1+x}Ge_{1-x}(N_{1-x}O_x)_2$ is constant

Wang et al., J. Mat. Chem. C 12 (2024) 1124-1131 44

(i) Cu-Zn disorder in kesterite-type materials

(ii) off-stoichiometry in kesterite-type materials

(iii) off-stoichiometry in quaternary chalcogenides – "kesterite-derived" materials

(iv) structural disorder in ternary nitrides

(v) Structural disorder in hybrid halide perovskites?

hybrid halide perovskites are defect tolerant ...

defect tolerant semiconductors

- tendency of a semiconductor to keep its properties despite the presence of crystallographic defects
- high light conversion efficiency is maintained despite high concentration of point defects

Defect tolerance can be arised by

MAPbl₃ - MAPI

MA - methylammonium $[CH_3NH_3]^+$

composition of the absorber layer of the record efficiency device

(Cs,MA,FA)Pb(I,Br)₃ FA ... formamidinium $[H_2NCH=NH_2]^+$

static structure (crystal structure) ... perovskite structure

 PbX_6 network \rightarrow cornersharing octahedra (in non-cubic structures tilted and distorted) \rightarrow electronic band structure of hybrid perovskites originates predominately from this network organic cations in [12] coordination by the halide

organic cations \rightarrow very flexible, large dipole moments

- \rightarrow contributing to dynamic disorder and electrostatic screening
- orientational disorder of the molecules ----- structural disorder

Perovskite structure – network of corner sharing PbX₆ octahedra

FA - Formamidinium

MA - Methylammonium

 tilting and kinking of the PbX₆ octahedra (distortet)

P. S. Whitfield et al., Sci. Rep. 6 (2016) 35685

- Perovskite structure: space group $I4cm \rightarrow$ non-centrosymmetric
- Pbl₆ octaedra tilting occurs along [001]
- MA⁺ molecules are aligned in <221> \rightarrow 8 possible orientations

→ 8-fold disorder of MA⁺ molecule

A. Franz, D.M. Többens, S. Schorr, Cryst.Res.Technol. 51 (2016) 534

- crystal class (point group) which contains an inversion center as one of its symmetry elements is **centrosymmetric**
- crystals with an inversion center cannot display certain properties, such as piezoelectricity
- ferroelectric materials are also piezoelectric

crystal system	centrosymmetric	non-centrosymmetric
triclinic	Ī	1
monoclinic	2/m	2, m
orthorhombic	mmm	222, mm2
tetragonal	4/ <i>m</i> , 4/ <i>mmm</i>	$4, \overline{4}, 422, 4mm, \overline{4}m2$
trigonal	<u>3,3</u> m	3, 32, 3m
hexagonal	6/m,6/mmm	$6,\overline{6},622,6mm,\overline{6}m2$
cubic	$m3, m\overline{3}m$	$23, \overline{4}3m, 432$

our studies

- combined synchrotron X-ray (BESSYII) and neutron (BER) diffraction
- single crystal XRD at Diamond Light Source (GB) applying anomalous diffraction at the Pb edge showed → MAPI adopts the space group *I*4*cm*

MAPbl₃ is non-centrosymmetric at RT

counts [a.u.]

4-fold rotations of the molecule

quasi-elastic and inelastic neutron scattering (QENS, INS) @Institute Laue-Langevin (ILL), Grenoble, T=190 K – 70 K

3-fold rotations of the molecule

Chen et al., Phys.Chem.Chem.Phys., **17** (2015) 31278

G. Schuck, D. M. Többens, ..., and S. Schorr, J. Phys. Chem. C 122 (2018) 5227

FTIR investigations indicate \rightarrow in the orthorhombic phase (T < 161 K) the iodide is more strongly influenced by hydrogen bonding than the chloride

G. Schuck, D. M. Többens, M. Koch-Müller, I. Efthimiopoulos, and S. Schorr, J. Phys. Chem. C 122 (2018) 5227

MA molecule in cuboctahedral coordination by the halide

characteristic relaxation time τ of the C₃ jump rotation

$$\Gamma_{C3}[meV] = \frac{3\hbar}{\tau_{C3}[ps]}$$
 1635 ps > 485 ps > 135 ps

Chlorine substitution in MAPI (orthorhombic phase)
→ leads to a weakening of the hydrogen bonds

G. Schuck et al., J. Phys. Chem. C 123 (2019) 11436

Activation energies: MAPI₃, MAPbI_{2.94}Cl_{0.06} and MAPbCl₃

Activation energy E_a $ln(\tau) = \frac{E_a}{k_B T} - ln(A)$ k_B : Boltzmann constant A: pre-exponential factor

- E_a for to **MAPbl₃** in the range of literature data (Chen et. al. 2015)
- significant decrease of E_a in MAPbI_{2.94}Cl_{0.06} and MAPbCl₃ compared to MAPbI₃

E_a also indicates that chlorine substitution leads to a weakening of the hydrogen bridge bonds in the orthorhombic phase

HZB Helmholtz Zentrum Berlin

- intrinsic point defects determine electronic properties of semiconductors
 - → their structural origin, defect type and concentration in correlation on chemical composition is crucial for defect engineering to improve the power conversion efficiency (PCE)
- structural disorder can be derived by careful analysis of diffraction data
- structural disorder in kesterite-type solar absorbers
 - → $Cu_{Zn} \& Zn_{Cu}$ anti-sites causing **Cu/Zn disorder**
 - → vacancies, anti-sites and interstitials caused by off-stoichiometry ... off-stoichiometrytype model
 - \rightarrow band gap energy changes with the off-stoichiometry type
- structural disorder in "kesterite-derived" materials
 - → Stannite-type and Wurtz-Stannite type Cu₂Mn(Ge,Sn)(S,Se)₄ compounds show Cu-Mn swapping (Cu_{Mn} & Mn_{Cu} < 0.05)</p>
- ternary nitrides (ZnGeN₂)
 - → earth-abundant alternatives to III-V semiconductors
 - → Zn-Ge disorder correlates with the band gap energy
- ★ hybrid metal halide perovskites are considered as defect tolerant structural disorder → orientational disorder of the molecule

Acknowledgments

my colleagues from the Department Structure and Dynamics of Energy Materials at HZB

- Dr. Galina Gurieva (quaternary chalcogenides)
- Dr. Daniel Többens (KMC2-@BESSY II)
- Dr. Joachim Breternitz (hybrid halide perovskites, ternary nitrides)

Dr. Kai Neldner (CZTS) Dr. Elisa Valle-Rios (CZTSe) Dr. Rene Gunder (CZGeSe) Dr. Frederike Lehmann (MAPI) Zhenyu Wang (ZnGeN₂)

former PhD students

instrument scientists (neutron diffraction) at neutron sources all over the world

- former BERII at HZB, Germany
- Institute Laue-Langevin (ILL), Grenoble, France
- Paul-Scherrer-Institute (PSI), Villigen, Switzerland
- SNS, Oak Ridge National Lab, US
- ANSTO, Lucas Heights (near Sydney), Australia

instrument scientists (synX-ray diffraction) at **synchrotron radiation sources**

- ESRF, Grenoble, France
- Diamond Light Source, UK

⁽²⁰¹²⁻²⁰¹⁵⁾

(2017-2019)

(2018-2023)

Thank you for your attention!

15th Kesterite⁺ & ReNewPV Workshop 2025 11. June – 13. June 2025 Berlin, Germany

CZTS

S. Chen et al, Phys Rev 81 (2010) 245204 T. Maeda et al., Jpn. J. Appl. Phys. 50 (2011) 04DP07

intrinsic point defects

defects introduce energy levels (traps) in the band gap → annihilate charge carriers (Shockley-Read-Hall recombination-SRH)

 $V_{CII} \rightarrow$ shallow acceptor $Zn_{Cu} \rightarrow mid gap defect$ $Zn_{sn} \rightarrow mid gap defect$ $Zn_i \rightarrow mid gap defect$ $Cu_{Sn} \rightarrow deep defect$ $Cu_i \rightarrow not favourable$ $Cu_{7n} \rightarrow (shallow)$ acceptor $Sn_{Zn} \rightarrow mid gap defect$ intrinsic point defects in high concentrations $(10^{19} - 10^{20} \text{ defects/cm}^3)$

→ structural disorder

Effect of off-stoichiometry on band gap energy E_g

S. Schorr and C. Weidenthaler (Eds.), Crystallography in Materials Research, De Gruyter 2021

HZB Helmholtz Zentrum Berlin "One of the <u>biggest advantages</u> offered by halide perovskites with respect to other semiconductor materials is the possibility to tune their absorption onset a la carte by ion replacement..."

M. Anaya et al. Joule 1 (2017) 769-793

P. M. Woodward, Acta Cryst. B 53 (1997) 32-43 perovskite family ... perovskites network of corner sharing octahedra

> cubic perovskite (space group $Pm\overline{3}m$) e. g. MAPbBr₃

tetragonal perovskite (space group $I \frac{4}{m} cm$) e. g. MAPbl₃

orthorhombic perovskite (space group *Pnma*) e. g. MAPbCl₃ One of the <u>biggest advantages</u> offered by chalcogenide kesterites with respect to other semiconductor materials is the possibility to tune the absorption onset a la carte by ion replacement AND the long term stability of the material

B. Pamplin, Progr. Cryst. Growth Charact. 3 (1981)179-192 adamantine family ... adamantines network of corner sharing tetrahedra

tetragonal stannite (space group $I\overline{4}2m$) e. g. Cu₂MnSnS₄

tetragonal kesterite (space group I⁴) e. g. Cu₂ZnGeSe₄

orthorhombic wurtz-stannite (space group Pnm2₁) e. g. Cu₂MnGeS₄

monoclinic wurtz-kesterite (space group Pn) e. g. Cu₂ZnSiSe₄

Schorr, Sol. En. Mat. Sol. Cells 249 (2022) 112044 59

ion replacement (cation/anion substitution) → formation of mixed crystals (solid solutions)

Are there similar challenges for perovskites?

replace I by Br in MAPbl₃ \rightarrow MAPb($I_{1-x}Br_x$)₃

- crystal structure changes from tetragonal to cubic perovskite
- not a complete solid solution miscibility gap

band gap energy E_g (determined by UV-Vis experiments)

Helmholtz

ZB