Department of Materials

Electronic and Interface Materials Laboratory

Beyond SiO_x for Hole-Selective Poly-Si Passivating Contacts - The potential of SiN_x or AlO_x

Shona McNab, Peter Wilshaw, Ruy Sebastian Bonilla

Outline

- Poly-Si contacts or 'TOPCon'
- Current limitations with SiO_x
- Benefits of SiN_{x} and AlO_{x}
- Fabrication
- Transport Properties
- Passivation Properties
- Comparison with other work
- Summary

TOPCon Silicon Cells

Tunnel Oxide Passivated Contact

What comes next for TOPCon?

- SiO_x poly-Si hole contacts
 - Both Sides passivated contacts
 →Potential for higher efficiency
 - So far less effective than electron contacts¹ \times \rightarrow Why?

Note: parasitic absorption from poly-Si on the front – not considered today!

¹R. Basnet *Appl. Phys. Rev.* (2024), 11, 011311

Limitations of SiO_x: Part 1

- Hole Transport Properties

• p-type SiO_x hole contacts rely on **pinhole** conduction

¹R. Basnet *Appl. Phys. Rev.* (2024), 11, 011311 S. McNab *AIP Conference Proceedings, (2022), 020013*

interface.materials.ox.ac.uk

Limitations of SiO_x: Part 2

- P-type Passivation Properties

- Boron is more soluble in SiO_x than Phosphorus:
 - Deeper diffusion more Auger recombination
 - Boron in SiOx introduces defects higher D_{it}
- \rightarrow More recombination

poly-Si

SiO₂ n⁺ poly-Si Rear SiN_{*}

n or p-type Si

The Benefits of SiN_x and AlO_x: Part 1

XPS VBO measurements

Tunnelling current Calculations

²S. McNab AIP Conference Proceedings, (2022), 020013

The Benefits of SiN_x and AlO_x: Part 2

- Boron diffusion profile

ECV Doping Profile

- SiN_x blocks diffusion
- SiO_x and AlO_x deep boron diffusion

¹ S. McNab, *Submitted*

The Benefits of SiNx and AlOx: Part 3 Field effect passivation?

SiOx has very little charge AlOx has a negative charge SiNx has a positive charge

Why is this important?

¹A. Cuevas, IEEE 42nd Photovoltaic Specialist Conference, (2015)

interface.materials.ox.ac.uk

The Benefits of SiN_x and AlO_x: Part 3 Field effect passivation?

The Benefits of SiNx and AlOx: Part 3 Field effect passivation?

¹A. Cuevas, *IEEE 42nd Photovoltaic Specialist Conference*, (2015) ²S. McNab, *PhD Thesis*, *University of Oxford*, (2023)

SiN_x or AIO_x Poly-Si Contacts

Outline

- What is TOPCon
- Current limitations with SiO_x
- Benefits of SiN_{x} and AlO_{x}
- Fabrication
- Transport Properties
- Passivation Properties
- Comparison with other work
- Summary

Fabrication Process

interface.materials.ox.ac.uk

Dielectric layers for Poly-Si deposition

- Why RCA2 SiO_x?
 - Reasonable chemical passivation
 - Very thin \rightarrow limited effect on the tunnelling conduction

Outline

- What is TOPCon
- Current limitations with SiO_x
- Benefits of SiN_{x} and AlO_{x}
- Fabrication
- Transport Properties
- Passivation Properties
- Comparison with other work
- Summary

Transport Properties

¹ S. McNab, *Submitted*

interface.materials.ox.ac.uk

Understanding Transport Mechanisms

• Temperature Dependent IV measurements

² S. McNab, *IEEE Journal of Photovoltaics*, (2022), 1-11

interface.materials.ox.ac.uk

Understanding Transport Mechanisms

• Batch 1a: Adjust anneal Temperature

- 800 °C anneal shows a purely tunnelling fit
- >850 °C has a high pinhole density
- Pinholes are not required for $\rho_c < 100 \text{ m}\Omega \cdot \text{cm}^2$
- But they might form anyway!

¹ S. McNab, *Submitted*

Outline

- What is TOPCon
- Current limitations with SiO_x
- Benefits of SiN_x and AlO_x
- Fabrication
- Transport Properties
- Passivation Properties
- Comparison with other work
- Summary

Passivation

- Low iV_{OC} compared to SiO_x control X
 AIO too low to even measure!
- AIO_x too low to even measure!
- Why?

¹ S. McNab, *Submitted*

Characterising Passivation: Uniformity

Severe inhomogeneity issues – but some areas with high passivation

¹ S. McNab, *Submitted*

interface.materials.ox.ac.uk

shona.mcnab@materials.ox.ac.uk

- Thick dielectrics
- How do the properties of <2nm dielectrics compare
- Difficult to measure due to high conductivity

¹A. Cuevas, IEEE 42nd Photovoltaic Specialist Conference, (2015)

- Surface Photovoltage
- No direct contact to the dielectric
 - Prevents conduction

• Effect of D_{it} and Q_f difficult to deconvolute

¹ S. McNab IEEE Journal of Photovoltaics, (2022), 1-11

Capacitance-Voltage Measurements

- CV is commonly used for thick dielectrics
 - Q_f shifts curve left/right
 - D_{it} changes the slope
- Sensitive to interface charge
- High conductivity prevents an accurate CV measurement

¹ S. McNab, *Submitted*

¹ S. McNab, *Submitted*

Improved Passivation

Takeaways from Batch 1

- Tunnelling contacts are possible
- SiN_x blocks boron
- RCA2+AlO_x has high -ve charge
- High pinhole density X
- Uniformity issues X
- Used anneal optimised for SiO_x

For Batch 2

- Varied anneal conditions
- Improved RCA2 processing and wafer handling
- Focus on most promising interlayers

Batch 2 after hydrogenation

¹ S. McNab, *Submitted*

RCA2 + SiN_x

RCA2+AIO,

Outline

- What is TOPCon
- Current limitations with SiO_x
- Benefits of SiN_x and AIO_x
- Fabrication
- Transport Properties
- Passivation Properties
- Comparison with other work
- Summary

Comparison to other work

¹ S. McNab, *Submitted*

Summary

- Potential benefits of PECVD $\text{SiN}_{\rm x}$ and ALD $\text{AlO}_{\rm x}$ as hole selective poly-Si tunnelling contacts
- Developed Methods for Characterising \mathbf{Q}_{f} and \mathbf{D}_{it} of 2nm dielectrics
- Significant improvement in 2 batches:
 - SiN_x iV_{OC} 668→699 mV
 - AlO_x shows promise before poly-Si

Acknowledgements

Many thanks to...

- ... Sebastian and Peter
- ... the Interfaces group in the Department of materials
- ... Audrey Morisset and the team at EPFL

... other collaborators at the University of Warwick, University of Southampton and AIST.

... and SPREE and the OMEGA teams for welcoming me to UNSW!

XPS data

- SiNx stoichiometry low N concentration, close to SiOx
- AIOx significant increase in AI concentration

