

From solution processable solar cells to bioenergy: across the spectrum of renewable energy generation technologies

Think Ahead

Faculty of Engineering

School of Photovoltaic and Renewable Energy Engineering

Rob Patterson

SPREE Open Seminar UNSW Sydney, Australia 2052 16 July 2015

Overview of Activities

Solution processable materials

- Colloidal Quantum Dot Solar Cells (CQDSCs)
- Sulfohalides
- Narrow bandgap oxides

Hot carrier dynamics modeling

DFT/semiclassical electron-phonon bandstructures & transitions

Hot carrier dynamics experiment

- Inelastic X-ray Spectroscopy (IXS) @ Spring8 synchrotron, Japan
- Ultra-fast PL/TA

All-optical hot carrier solar cells

Plasmonics, nano-optics, photonic crystals, Purcell factor and hot luminescence

Photoelectrochemical cells

- ZnS
- Catechols

Bioenergy

- Net-negative carbon energy systems
- 2nd Generation Sugar Air Batteries/Fuel Cells

For today....

- Colloidal Quantum Dot Solar Cells (CQDSCs)
- Catechol surface modified TiO₂ nanoparticles (NPs)
- Net-negative carbon bioenergy systems
- Antimony sulfoiodide (SbSI) and related compounds as highly polarizable materials

Colloidal Quantum Dot Solar Cells

Lin Yuan, Zhilong Zhang, Naoya Kobamoto, Yicong Hu, Gavin Conibeer, Shujuan Huang

ARC DP 2014-2017

CQDSCs – Previous work

- E. Sargent et al, University of Toronto Canada / J. Tang et al, Wuhan, China
- NREL, M. Beard et al, Golden, Los Alamos USA/ LANL
- M. Bawendi et al, MIT USA
- Current record efficiency CQDSCs ~9.9%

CQDSCs – Motivation & Drawbacks

- Solution processable materials
 - Low processing temperatures
 - Low embodied energy
 - Inexpensive raw materials
- Novel quantum confinement effects/tunable bandgap
- Low material lifetime (surface area, passivation)

CQDSCs - Materials available

- Nanoparticles
 - PbS (QD)
 - PbSe (QD)
 - ZnO ("e-transport")
 - $-\alpha$ -TiO₂ ("e-transport")
 - SiO₂ (plasmonics)
- Solution processable materials (Sol-gel)
 - CaMnO₃, MnO_x
 - MoO_{3-δ}
 - NiO_x
 - MoS₂
 - ZnS
 - CuS_x

Figure. Silica nanoparticles ~300 nm diameter

CQDSCs - Shape and size monodispersity

Figure. Bright field TEM of PbSe NPs

CQDSCs – Typical material parameters

- Mainly Pbchalcogenides
- Bohr radii, a_B
 PbS ~ 18 nm
- Sizes ~ 3-8 nm
- $E_{gap} \sim 0.7 1.6 \text{ eV}$
- PbS $E_{g,bulk} \sim 0.4 \text{ eV}$

Figure. Atomic resolution dark field TEM image of Br-PbS

UNSW

CQDSCs – Cell structure

CQDSCs - Air stability

Figure. Unprotected PbSe UV-Vis showing a blue shift due to oxidation.

Figure. Bromine terminated PbS UV-Vis showing no blue shift after ~ 5 weeks.

CQDSCs – Film fabrication & Linking

- "Layer by layer" deposition procedure:
 - Drop a few drops of colloidal solution on FTO (conductive) glass
 - Spin coat
 - Link
 - Wash
- Solid phase ligand exchange
- Popular "linker" ligands: MPA and lodine
- QDs ideally spaced by a single molecule, or even one or two atoms

CQDSCs Results

Voc: 514.9 mV

Jsc: 10.77 mA/cm2

• FF: 37.5%

PCE: 2.08%

 Light soaking improved the curve

 World's best cells have more than double the current density and a better fill factor

CQDSCs - Repeatability

■2 July -- 1 2 July -- 2 4.0E-03 ▼2 July -- 3 ▲ 2 July -- 4 3.5E-03 ▶ 6 July -- 1 √6 July -- 2 3.0E-03 M6 July -- 3 2.5E-03 1.5E-03 1.0E-03 5.0E-04 0.0E+00 0.2 0.3 0.1 0.4

2.1%, May 2015

2.47%, July 2015

CQDSCs – Further Work

- Continue to improve efficiencies.
 - Film Continuity
 - Film Density
- Wide area devices
- Light trapping, plasmonics, hydrophillic QDs

Catechol Surface Functionalized TiO₂ NPs

Shira Samocha, Vince Lorganzo, Judy Hart

Catechol TiO₂ – NP Structure

- Bandgap narrowing effect with specific molecule on the surface
- Gallic Acid, Ascorbic Acid, Dopamine, Tertbutyl catechol
- Anything with oxidation state greater than 4 and an ability to withstand strong chelation.
- Typically oxide materials

C-TiO₂ – Nanoparticle surface dipoles/ states

- With nanoparticles there is always a lot of surface
- Charge transfer across surface → strong surface dipole → bandgap reduction
- Can be explained with tight binding model for electronic bandstructure, perturbed at the surface.
- Surface Effects
 - Functionalization with ligands
 - Electric fields from depletion regions form interface dipoles

Figure 2. Band gap for PbS clusters. Black diamonds represent the temperature-adjusted calculations. Circles represent the experimental data of Wang et al.⁹

C-TiO₂ – LCAO/TB electronic bandstructure

Potential Energy + Kinetic Energy(\mathbf{k}) = Total Energy(\mathbf{k})

C-TiO₂ –Stark splittings due to surface dipoles

C-TiO₂ – Bandgap narrowing

C-TiO₂ -- Photocatalyst for solar hydrogen

 TiO₂ is known to be a good photocatalyst for water splitting (one of the first materials tried)

 Trouble is, it doesn't absorb light very well

 Optimal water splitting bandgap of ~2 eV – within reach using catechols

 Surface state created, catalysis happens at the surface, so worth trying

Bioenergy – Net-negative carbon bioenergy system

Melinda White, Campbell Griffin, Zhan Leo, Can Chu, Tracey Yeung, Louise Walsh, Peihang Zhang, Sheng Jiang, Sabrina Beckmann, Mike Manefield

Bioenergy – Motivation

Answering the GCEP call for net-negative carbon energy systems.

Bioenergy – Coccolithophorid algae (shell producing)

- Coccolithophorid algae
 - Carbohydrates, lipids, proteins → biogas (CH4 + CO2)
 - Calcium carbonate (CaCO3) → sequestration
- "Shell producing" algae are abundant.
- Two common species:
 - Pleurochrysis Carterae
 - Emiliania Huxleyi

Bioenergy – Biomimetic concept

- Wetlands, marine canyons, mangroves are sources of biogenic methane
- Passive, selfcontained
- Can this be mimicked in an industrial system with overall increased rates?
- Can that system be scalable?

Methanogens

Bioenergy – System structure

Bioenergy – System requirements

- Requirements
 - Oxygen/light tolerant methanogenic community
 - Photosynthesizing microbes with very high growth rates
 - high CO₂ tolerances (low O₂ environment)

Bioenergy – Growth rates

Bioenergy – Oxygen and light dependence

Figure. Varying initial headspace CO₂

Figure. Light exposure

Bioenergy – Methane output

Not in-situ yet... we're working on it.

Sulfohalide materials for solution processable solar cells

Sulfohalides – Motivation

- Ferroelectric has high permittivity (ε_r), high polarizability and therefore possibly high screening
 - Si: $ε_r \sim 11.7$
 - Perovskite: $\varepsilon_r \sim 60$
 - Ferroelectric: $\varepsilon_r \sim 1x10^4$
- Problems:
 - large bandgaps
 - Oxides
 - Unknown mobilities/ lifetimes

Sulfohalides – Defect removal, passivation, screening

1. Remove defects (fixing the problem)

2. Passivation (masking the problem)

3. Screening(disguising the problem)

Sulfohalides – Connect er with distortions/vibrations and overall material polarizability

•
$$D = \varepsilon_0^* E + P$$

 $\rightarrow \varepsilon_r = \varepsilon_0 + P/E$

Dynamic process

Free charge

Bound charge

Atom centre

Sulfohalides – Potential for charge segregation

Ferroelectric

"Paraelectric"

Electron contact

Potential difference between electrons and holes in the bulk of the material.

Hole contact

Sulfohalides -- Structure

Keller, Act Cryst B, 2006

Sulfohalides – High permittivity semiconductor materials available from chemical synthesis

- SbSI, Eg ~ 1.8 eV
 - (top cell)
- SbSel, Eg ~ 1.6 eV
 - (getting closer...)

Sulfohalides - SbSeI TEM

Sulfohalides - SbSeI TEM

Sulfohalides - Thin film fabrication

 Suspend the NWs

 Find appropriate p-type material

Summary

- CQDSCs at over 2% efficiency fabricated
- Catechol TiO₂ waiting for catalytic measurements
- Bioenergy has pieces assembled. System still required. Algal concentration and nutrient cycling ongoing
- High polarizability materials in-hand, detailed characterization required.

Thank you all for your support.

- Zhilong Zhang
- Lin Yuan
- Naoya Kobamoto
- Jeffrey Yang
- Hongze Xia
- Yu Feng
- ... and everyone else.

- Shujuan Huang
- Sabrina Beckmann
- Judy Hart
- Binesh Puthen Veettil
- Mike Manefield
- Ashraf Uddin
- Leigh Aldous
- John Stride
- Gavin Conibeer

