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Overview of Activities

« Solution processable materials
— Colloidal Quantum Dot Solar Cells (CQDSCs)
— Sulfohalides
— Narrow bandgap oxides
* Hot carrier dynamics modeling
— DFT/semiclassical electron-phonon bandstructures & transitions
« Hot carrier dynamics experiment
— Inelastic X-ray Spectroscopy (IXS) @ Spring8 synchrotron, Japan
— Ultra-fast PL/TA
« All-optical hot carrier solar cells
— Plasmonics, nano-optics, photonic crystals, Purcell factor and hot luminescence
 Photoelectrochemical cells
— ZnS
— Catechols
 Bioenergy
— Net-negative carbon energy systems
— 2" Generation Sugar Air Batteries/Fuel Cells

School of Photovoltaic and Renewable Energy Engineering




For today....

« Colloidal Quantum Dot Solar Cells (CQDSCs)

« Catechol surface modified TiO, nanoparticles
(NPs)

* Net-negative carbon bioenergy systems

« Antimony sulfoiodide (SbSI) and related
compounds as highly polarizable materials
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Collowdal Quantum Dot Solar Cells

Lin Yuan, Zhilong Zhang, Naoya Kobamoto,
Yicong Hu, Gavin Conibeer, Shujuan Huang

ARC DP 2014-2017
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CODSCs - Previous work
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CODSCs — Motuwation & Drawbacks

« Solution processable materials
— Low processing temperatures
— Low embodied energy
— Inexpensive raw materials

* Novel quantum confinement effects/tunable bandgap
« Low material lifetime (surface area, passivation)
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CODSCs — Matertals avallable

« Nanoparticles
— PbS (QD)
— PbSe (QD)
— ZnO (“e-transport”)
— a-TiO, (“e-transport”)
— SIO, (plasmonics)
« Solution processable
materials (Sol-gel)
— CaMnO3;, MnO,
— MoOg4
— NiO,
— MoS,
— ZnS
— Cus, ..

Flgure Silica nanopartlcles ~300 nm dlameter

|
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CQDSCs - Shape and size monodispersity

Coordinating solvent
Stabilizer at 150-350C

Ligands:

NPs
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CQDSCs - Typical matertal parameters

« Mainly Pb-
chalcogenides

» Bohr radii, ag
— PbS ~ 18 nm

e Sizes ~ 3-8 nm

c E.,~0.7-16eV

gap
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CODSCs - Cell structure
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CQADSCs - Film fabrication & Linking

“Layer by layer”
deposition procedure:

— Drop a few drops of
colloidal solution on
FTO (conductive)
glass

— Spin coat
— Link
Wash

. Solld phase ligand
exchange

* Popular “linker”
ligands: MPA and
lodine

* QDs ideally spaced by
a single molecule, or
even one or two atoms
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CQDSCs Results

« Voc: 514.9 mV

e Jsc: 10.77 mA/cm?2
e FF:37.5%

« PCE: 2.08%

« Light soaking improved the
curve

 World’s best cells have more
than double the current density
and a better fill factor
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Isc (mA)

CQDSCs - Repeatability
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CQDSCs — Further Work

« Continue to improve efficiencies.
— Film Continuity
— Film Density

* Wide area devices
 Light trapping, plasmonics, hydrophillic QDs
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Catechol Surface Functionalized
TiO5 NPs

Shira Samocha, Vince Lorganzo,
Judy Hart

=
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Catechol TiO, — NP Structure

 Bandgap
narrowing effect X
with specific
molecule on the
surface

 Gallic Acid,
Ascorbic Acid,
Dopamine, Tert-
butyl catechol

* Anything with
oxidation state
greater than 4
and an ability to
withstand strong
chelation.

« Typically oxide
materials
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N
.
-
-
. .
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C-TiO5 — Nanoparticle surface dipoles/ states

« With nanoparticles there is
always a lot of surface

« Charge transfer across
surface - strong surface
dipole - bandgap reduction

« Can be explained with tight
binding model for electronic
bandstructure, perturbed at
the surface.

» Surface Effects
— Functionalization with ligands

— Electric fields from depletion
regions form interface dipoles

Kane et al, 1996

Band gap (eV)

]
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Figure 2. Band gap for PbS clusters. Black diamonds represent the
temperature-adjusted calculations. Circles represent the experimental f
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C-TiO, - LCAO/TB electronic bandstructure

Potential Energy + Kinetic Energy(k) = Total Energy(k)
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C-TiO, —Stark splittings due to surface dipoles

A A
Band splitting | ‘ Band curvature
— | B —=-
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C-TiO5 - Bandgap narrowing
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C-TiO, -- Photocatalyst for solar hydrogen

« TiO, is known to be a good
photocatalyst for water
splitting (one of the first
materials tried)

 Trouble s, it doesn’t
absorb light very well

« Optimal water splitting
bandgap of ~2 eV — within
reach using catechols

« Surface state created,
catalysis happens at the
surface, so worth trying
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Bloenergy — Net-negative carbon
bloenergy system

Melinda White, Campbell Griffin, Zhan
Leo, Can Chu, Tracey Yeung, Louise
Walsh, Peihang Zhang, Sheng Jiang,
Sabrina Beckmann, Mike Manefield
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Bloenergy — Motivation

« Answering the GCEP call for net-negative carbon
energy systems.
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Bloenergy — Coccolithophorid algae
(shell producing)

Atmospheric
Co,

» Coccolithophorid algae

— Carbohydrates, lipids, proteins -

biogas (CH4 + CO2)
) Seawater carbonate buffer system
— Calcium carbonate (CaCO3) = b CO,+ H,0 =5 HCO, + H' =5COZ + H*
—_ > 3

sequestration \_/
d

« “Shell producing” algae are abundant. 0 l
2
« Two common species: c CaCO; (in coccoliths)

— Pleurochrysis Carterae Coccolith

e . Organic
— Emiliania Huxleyi carbon
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Bloenergy — Blomimetic concept

 Wetlands, marine
canyons, mangroves

are sources of -
biogenic methane
* Passive, self- Photo-
contained synthesis
 Can this be mimicked
In an industrial system IS
with overall increased Aerobic, {
0,, CO,
rates? {
Fermentation,
* Canthat system be Sulfur reduction
scalable?
Anaerobic,
CH,
production

Methanogens
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Bloenergy — System structure

Exhaust
Gas /
Recycling |
(CO,, H,0)

———

Seawater,
Carbonates,
Algal
Nutrients

_' - (8) Filtering & H—/‘
b‘ CO, Degassing
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Bloenergy - System requirements

* Requirements
— Oxygen/light tolerant methanogenic community

— Photosynthesizing microbes with very high growth
rates

— high CO, tolerances (low O, environment)
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Cell Density [10* cells/mL]
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Bloenergy — Growth rates
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Bloenergy — Oxygen and light dependence
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Bloenergy — Methane output

* Not In-situ yet... we're
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Sulfohalide materials for solution
processable solar cells
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Sulfohalides — Motivation

« Ferroelectric — has high
permittivity (g,), high
polarizability and therefore
possibly high screening

— Sitg, ~11.7
— Perovskite: ¢, ~ 60
— Ferroelectric: g, ~ 1x10*
* Problems:
— large bandgaps
— Oxides
— Unknown mobilities/ lifetimes

School of Photovoltaic and Renewable Energy Engineering
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Sulfohalides - Defect removal, passivation, screening

1. Remove defects 2. Passivation 3. Screening
(fixing the problem) (masking the problem) (disguising the problem)
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Sulfohalides — Connect er with distortions/vibrations
and overall matertal polarizability

D=¢,E+P
2> ¢ =g+ PIE
Dynamic
process

@ Free charge

QBound charge

‘ Atom centre

School of Photovoltaic and Renewable Energy Engineering



Sulfohalides - Potential for charge segregation

Ferroelectric
NRAAN A RAEN
L o> CEETTE

W
Q}@ D@ 0 “Paraelectric”

Electron Potential difference between Hole
contact electrons gnd holes in the bulk of
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Sulfohalides -- Structure

Keller, Act Cryst B, 2006
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Sulfohalides - High permittivity semiconductor materials
available from chemical synthesis

« SbSI,Eg~18eV
— (top cell)

e SbSel,Eg~1.6eV
— (getting closer...)
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Sulfohalides — SbSel TEM

200 nm

UNSW
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Sulfohalides — SbSel TEM
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Sulfohalides — Thin fulm fabrication

e Suspend the
NWs

* Find appropriate
p-type material
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Summary

« CQDSCs at over 2% efficiency fabricated

» Catechol TiO, waiting for catalytic
measurements

* Bloenergy has pieces assembled. System
still required. Algal concentration and
nutrient cycling ongoing

* High polarizability materials in-hand,
detailed characterization required.

=
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Thank you all for your support.

Zhilong Zhang
Lin Yuan

Naoya Kobamoto
Jeffrey Yang
Hongze Xia

Yu Feng

... and everyone else.
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