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What are Liquid Metals (LM) ?

Liquid Metals (LM):
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Synthesis and functionalisation of LM nanoparticles
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Han J. et al., Liquid metals for tuning gas sensitive layers, Journal of Materials Chemistry C 2019,7, 6375-6382.
Ghasemian M.B. et al., Coating of gallium-based liquid metal particles with molybdenum oxide and oxysulfide for electronic band structure modulation, Nanoscale, 2023, 15, 5891-5898.
Ghasemian M.B. et al., Self-Limiting Galvanic Growth of MnO, Monolayers on a Liquid Metal—Applied to Photocatalysis, Advanced Functional Materials 2019,29, 1901649.



Two-dimensional (2D) materials

* Two-dimensional (2D) materials are planar structures with nanometer thicknesses
* Electronic band structure of 2D materials usually changes with composition and thickness variation

Preparation methods of 2D materials:

1. Exfoliation:

Mechanical cleavage

Chemical exfoliation

lon intercalation

Surfactant assisted ultrasonication

2. Deposition:

* Chemical vapour deposition (CVD)
* Molecular beam epitaxy (MBE)

* Pulsed laser deposition (PLD)
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3. Liquid metal-based printing



Synthesis of 2D and ultrathin materials by LM printing
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Zavabeti A., et al., A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 2017, 358, 332-335.
Datta R. S., et al., Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nature Electronics, 2020, 3, 51-58.



Environmentally friendly PbO monolayers by LM
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*  PbO monolayers showed a piezoelectric coefficient of ~30 pm/V
* 10%times less Pb than commercial PZT thin films

Ghasemian, M. B., et al., Ultra-thin lead oxide piezoelectric layers for reduced environmental contamination using a liquid metal-based process. Journal of Materials Chemistry A, 2020, 8, 19434-19443.



Liquid metal-based ultrathin transparent ITO

Squeeze transfer Cross-section Printed 2D ITO
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DattaR.S., et al., Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nature Electronics, 2020, 3, 51-58.
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Liquid metals as a doping strategy

The core of Bi-Sn liquid Sn migrating from the
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Ghasemian, M. B., et al., Doping Process of 2D Materials Based on the Selective Migration of Dopants to the Interface of Liquid Metals. Advanced Materials, 2021, 33, 2104793.



2D materials from high-melting-point metals
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Ghasemian, M. B., et al., Liquid Metal Doping Induced Asymmetry in Two-Dimensional Metal Oxides. Small, 2024, 2309924.



Bridge solubility in LMs

E] 10

B C N O FlNe

Bioran T Oxygen Fluarine Heon

Alsi P S ClfAr Reactive Nonmetals and Metalloids
Mostly insoluble in post-transition

36

3 az bx] 34 5
Ga|Ge As Se Br| Kr
Gallium Germani Arsenic Selenium Bromine

i = _ liquid metals
48 50 &1 52 53 54
In Sn|Sb Te | | Xe
Indium Tin Antimony  Tellurium ladine Xenon

Tl Pb Bi Po At Rn

Thallium  Lead  Bismuth Paolonium  Asta Radan

13 114 115 116 17 1B
Nh FI Mc Lv Ts Og
Nihonium  Flerowium Moscowi...  Livermor.. Tenness.. Oganes..

O

B

7 N
A

An element with natural solubility in both
liguid metals and nonmetals/metalloids,
acts as a bridge or carrier between the
two insoluble phases.

Solubility criteria: least 10 at% at below
1500 °C.

Ghasemian, M. B., et al., Bridge Doping Unlocks Hidden Pathways in Liquid Metal Chemistry. Accounts of Materials Research, 2025.



Large Scale Production of 2D Materials by LM
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Kong M., et al., Ambient printing of native oxides for ultrathin transparent flexible circuit boards. Science, 2024, 385, 731-737.



Summary

Advantages of the liquid metal process for the synthesis of nanoparticles and doping of 2D materials:

* Low or moderate working temperature a.}l‘ \C

* Simultaneous functionalization =

* Vacuum free -\ S’

e Large smooth atomically thin sheets N . A
* Thickness control P O el
* Access to single atomic layers that are not intrinsically layered and exfoliable

* Introducing dopants at desired concentrations and avoiding impurities _.f‘:,/
~

* No need for extremely clean environments (cleanrooms)

* No need for sophisticated and costly instruments and processes

* Adoptability with low temperature roll to roll processes
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