What causes voltage loss in solar cells?

Optimization of quantum structure for high efficiency triple junction solar cells based on voltage loss analysis

Meita ASAMI 3rd year PhD candidate, meita.asami@gmail.com

Riko Yokota, Maui Hino, Li Gan, Kentaroh Watanabe, Yoshiaki Nakano, Masakazu Sugiyama

Abstract

The lowest voltage loss was achieved by our new quantum structure solar cell

Outline

0. Abstract

1. Background, preceding studies

- 1-1. Why do we need an accurate voltage-loss analysis technique?
- 1-2. Voltage loss analysis based on detailed balance theory

2. Our work

2-1. Definition of "bandgap" of quantum structure solar cells
2-2. Voltage loss analysis on quantum structure solar cells
2-3. How to reduce the voltage loss in quantum structure solar cells
3. Conclusion

1-1 Background: Multi-junction solar cells

Current is restricted by the middle cell due to the excessively high bandgap, **1.40** eV.

M. Yamaguchi et al., Solar Energy 79, 2005.

1-1 Background: Multi-junction solar cells

2

Solution: Lattice-matched material whose bandgap is 1.20-1.35 eV

Efficiency $30\% \rightarrow 45\%$

1-1 Background: Bandgap adjustor

C Superlattice (SL): InGaAs that has narrower bandgap than GaAs can be used.

© Crystal strain is compensated by growing InGaAs and GaAsP thinly and alternately.

Effective bandgap **1.20-1.35** eV

N. J. Ekins-Daukes et al., Solar Energy 68, 2001.

I. Sayed, *IEEE JPV* **9**, 2019.

1-1 Background: Bandgap adjustor

② Quantum confinement effect hinders carrier extraction.

 \rightarrow Low current density

M. Sugiyama et al., J. Phys. D: Appl. Phys. 46, 2012.

1-1 Background: Undulated superlattice (WoW)

5

direction of crystal growth and current

- WoW is grown on a 6°misoriented GaAs (0 0 1) substrate at relatively low temperature (530~550°C)
- PSL is grown on a GaAs (0 0 1) substrate

*M. Sugiyama et al., Prog. Photovolt: Res. Appl. 24, 2016.

1-1 Background: Undulated superlattice (WoW)

6

direction of crystal growth and current

- We expected that Wire on Well can achieve better carrier collection, since there are locally thin quantum barrier areas
 - \rightarrow Carrier tunneling effect can be enhanced at thin barrier

*M. Sugiyama et al., Prog. Photovolt: Res. Appl. 24, 2016.

M. Asami et al., IEEE JPV 13, 2023.

[*]	Carrier Mobility [cm ² /Vs]		
		1	
	electron μ_n	hole μ_p	average $<\mu>=(\mu_n+\mu_p)/2$
WoW	5.10	2.67	3.89
PSL	1.21	1.45	1.33

Labels	J _{SC} (mA/cm²)	V _{OC} (V)	FF
GaAs ref.	23.47	0.966	0.814
20 PSL	22.20	0.927	0.813
50 PSL	22.50	0.916	0.803
20 WoW	23.65	0.910	0.779
50 WoW	24.87	0.886	0.736

- Thinner barrier area may have boosted the tunneling probability of photogenerated carriers
- →WoW solar cells achieved <u>high current</u> <u>density</u>
- →However, <u>open circuit voltage of WoW</u> <u>solar cells is low</u>

	1		
[*]	Carrier Mobility [cm ² /Vs]		
	electron μ_n	hole μ_p	average $<\mu>=(\mu_n+\mu_p)/2$
WoW	5.10	2.67	3.89
PSL	1.21	1.45	1.33

[001]	GaAs	InGaAs ^{6.}	GaAsP 5 nm 38
[110]	GaAs	65 nm	GaAsP
30nm			

Labels	J _{SC} (mA/cm ²)	V _{OC} (V)	FF
GaAs ref.	23.47	0.966	0.814
20 PSL	22.20	0.927	0.813
50 PSL	22.50	0.916	0.803
20 WoW	23.65	0.910	0.779
50 WoW	24.87	0.886	0.736

Why is the **open circuit voltage of WoW** solar cells low?

[*] M. Asami et al., IEEE JPV 10, 2020.

Without the information of **bandgap**, we cannot evaluate the <u>"quality" of voltage</u> ambiguous

For the development of solar cells, **voltage loss** must be evaluated accurately and the cause of the loss must be clarified

SL: Superlattice

Various combinations of bandgap

Several voltage loss analysis techniques have been proposed in preceding studies

Bandgap offset
$$W_{OC} = \frac{E_g}{q} - V_{OC}$$

Woc must not be applied to quantum structure solar cells [*]

We found that

voltage loss analysis based on **detailed balance theory** can be **applied to quantum structure solar cells**

1-2 Voltage loss analysis based on detailed balance theory

$$V_{OC}^{SQ} - V_{OC} = \frac{kT}{q} \ln \frac{J_{SC}^{SQ}}{J_{em,0}^{SQ}} - \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}^{SQ}}{J_{SC}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \times \frac{J_{em,0}^{SQ}}{J_{em,0}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}}$$

$$= \left(-\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{em,0}^{SQ}}{J_{em,0}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{SC}} \right) = \Delta V_{OC}^{SC} + \Delta V_{OC}^{rad} + \Delta V_{OC}^{nonrad}$$

$$Open circuit voltage at Shockley-Queisser (SQ) limit calculated from $E_g \Rightarrow V_{OC}^{SQ} = \frac{kT}{q} \ln \frac{\int_{E_g}^{\infty} 1 \times \phi_{sun} dE}{\int_{E_g}^{\infty} 1 \times \phi_{bb} dE}$

$$J = 0 = J_{SC} - J_{em,0} \left(\exp\left(\frac{qV_{OC}}{kT}\right) - 1 \right) - J_{nr}$$

$$\therefore V_{OC} = \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}}$$

$$Three types of voltage loss radiative recombination voltage loss non-radiative recombination voltage$$$$

 $J_{em,0}$: diode saturation current, J_{nr} : non-radiative recombination current

U. Rau et al., Physical Review Applied 7, 2017.

 ϕ_{sun} : Photon flux of sunlight, ϕ_{bb} : Photon flux of black body radiation

1-2 Voltage loss analysis based on detailed balance theory

$$\frac{V_{OC}^{SQ}}{V_{OC}} - \frac{V_{OC}}{Q} = \frac{kT}{q} \ln \frac{J_{SC}^{SQ}}{J_{em,0}^{SQ}} - \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}} = \frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} + \frac{kT}{q} \ln \frac{J_{SC}}{J_{em,0}^{SQ}} + \frac{kT}{q} \ln \frac{J_{SC}}{J_{em,0}^{SQ}} = \frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} + \frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} + \frac{kT}{q} \ln \frac{J_{SC}}{J_{em,0}^{SQ}} + \frac{kT}{q} \ln \frac{J_{SC}}{J_{em,0}^{SQ}} = \frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} + \frac{kT}{q} \ln \frac{J_{SC}}{J_{$$

For the calculation of open circuit voltage at SQ limit, we have to define <u>effective</u> <u>bandgap</u> E_g of solar cells Three types of voltage loss Short circuit current voltage loss radiative recombination voltage loss non-radiative recombination voltage loss

13

U. Rau et al., Physical Review Applied 7, 2017.

Outline

0. Abstract

1. Background, preceding studies

1-1. Why do we need an accurate voltage-loss analysis technique?1-2. Voltage loss analysis based on detailed balance theory

2. Our work

2-1. Definition of "bandgap" of quantum structure solar cells
2-2. Voltage loss analysis on quantum structure solar cells
2-3. How to reduce the voltage loss in quantum structure solar cells
3. Conclusion

All of these methods are not applicable to quantum solar cells cf. M. Asami *et al.*, *IEEE JPV* **13**, 2023. We propose a new method to define the "bandgap" of quantum structure solar cells

The main objective of lowering the bandgap of the middle cell is to enhance current density

1. A peak at the highest energy is

regarded as a standard bandgap E_a^{st}

1. A peak at the highest energy is regarded as a standard bandgap E_a^{st} 2. Calculate the increased current density J_{exp} by expanding absorption edge from the standard bandgap to lower energy 3. Maximum value of EQE 4. Calculate E_q^{PV} from $q \int_{E_a^{PV}} \max\{Q_e\} \phi_{sun} dE = J_{exp}$ $\bigcirc \phi_{sun} \, dE = \bigcup$ $\phi_{sun} dE$

1-2 Voltage loss analysis based on detailed balance theory

$$V_{OC}^{SQ} - V_{OC} = \frac{kT}{q} \ln \frac{J_{SC}^{SQ}}{J_{em,0}^{SQ}} - \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}^{SQ}}{J_{SC}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \times \frac{J_{em,0}^{SQ}}{J_{em,0}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}}$$

$$= \left(-\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{em,0}^{SQ}}{J_{em,0}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{SC}} \right) = \Delta V_{OC}^{SC} + \Delta V_{OC}^{rad} + \Delta V_{OC}^{nonrad}$$

$$Open circuit voltage at Shockley-Queisser (SQ) limit calculated from E_g \Rightarrow V_{OC}^{SQ} = \frac{kT}{q} \ln \frac{\int_{E_g}^{\infty} 1 \times \phi_{sun} dE}{\int_{E_g}^{\infty} 1 \times \phi_{bb} dE}$$

$$J = 0 = J_{SC} - J_{em,0} \left(\exp\left(\frac{qV_{OC}}{kT}\right) - 1 \right) - J_{nr}$$

$$\therefore V_{OC} = \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}}$$

$$Three types of voltage loss radiative recombination voltage loss non-radiative recombination voltage$$

 $J_{em,0}$: diode saturation current, J_{nr} : non-radiative recombination current

U. Rau et al., Physical Review Applied 7, 2017.

 ϕ_{sun} : Photon flux of sunlight, ϕ_{bb} : Photon flux of black body radiation

2-2 Voltage loss analysis on quantum structure solar cells

$$V_{OC}^{SQ} - V_{OC} = \frac{kT}{q} \ln \frac{J_{SC}^{SQ}}{J_{em,0}^{SQ}} - \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}^{SQ} - J_{nr}}{J_{SC}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \times \frac{J_{em,0}^{SQ}}{J_{em,0}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}} \times \frac{J_{SC} - J_{nr}}{J_{sc}}$$

$$= \left(-\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{em,0}^{SQ}}{J_{em,0}^{SQ}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{sc}} \right) = \underline{\Delta V_{OC}^{SC}} + \underline{\Delta V_{OC}^{rad}} + \underline{\Delta V_{OC}^{nonrad}}$$

$$V_{OC}^{SQ} = \frac{kT}{q} \ln \frac{\int_{E_g}^{\infty} 1 \times \phi_{sun} dE}{\int_{E_g}^{\infty} 1 \times \phi_{bb} dE} = \frac{kT}{q} \ln \frac{\int_{E_g}^{\infty} max \{Q_e\} \times \phi_{sun} dE}{\int_{E_g}^{\infty} max \{Q_e\} \times \phi_{bb} dE} = \frac{kT}{q} \ln \frac{J_{SC}^{max}}{J_{em,0}^{max}}$$

$$We \text{ modified the conventional method}$$

$$W_{OC}^{SC} = -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{max}}, \underline{\Delta V_{OC}^{rad}} = -\frac{kT}{q} \ln \frac{J_{em,0}^{max}}{J_{em,0}^{max}} \equiv -\frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{SC}}$$

$$Hore types of voltage loss since in the voltage loss since i$$

 ϕ_{sun} : Photon flux of sunlight, ϕ_{bb} : Photon flux of black body radiation

This modification is needed for low EQE samples.

Without this modification, ΔV_{OC}^{rad} sometimes becomes negative value (unphysical situation)

$$V_{OC}^{SQ} = \frac{kT}{q} \ln \frac{\int_{E_g}^{\infty} 1 \times \phi_{sun} dE}{\int_{E_g}^{\infty} 1 \times \phi_{bb} dE} = \frac{kT}{q} \ln \frac{\int_{E_g}^{\infty} \max\{Q_e\} \times \phi_{sun} dE}{\int_{E_g}^{\infty} \max\{Q_e\} \times \phi_{bb} dE} = \frac{kT}{q} \ln \frac{J_{SC}^{max}}{J_{em,0}^{max}}$$

$$\frac{We \text{ modified the conventional method}}{\int_{SC}^{We modified the conventional method}} = -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{max}}}{\int_{SC}^{We modified the conventional method}} = -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{We modified the conventional method}}{\int_{SC}^{We modified the conventional method}} = -\frac{kT}{q} \ln \frac$$

 ϕ_{sun} : Photon flux of sunlight, ϕ_{bb} : Photon flux of black body radiation

2-2 Intuitive way to understand each voltage loss

An ideal solar cell

A quantum structure solar

generated current <u>cell</u> non-radiative recombination radiative recombination

2-2 Short circuit current voltage loss

An ideal solar cell

A quantum structure solar

generated current <u>cell</u> non-radiative recombination radiative recombination

2-2 Short circuit current voltage loss

Short circuit current voltage loss is usually negligibly small

2-2 Short circuit current voltage loss

A quantum structure solar cell

An ideal solar cell

An ideal solar cell does not have any non-radiative recombination voltage loss

Non-radiative recombination voltage loss can be evaluated by either EQE or EL measurements [*]

[*] M. Asami et al., IEEE JPV 13, 2023.

$$V_{OC}^{SC} \equiv -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{max}}, \Delta V_{OC}^{rad} \equiv -\frac{kT}{q} \ln \frac{J_{em,0}^{max}}{J_{em,0}}, \Delta V_{OC}^{nonrad} \equiv -\frac{kT}{q} \ln \frac{J_{SC} - J_n}{J_{SC}}$$

An ideal solar cell

A quantum structure solar cell

generated current non-radiative recombination radiative recombination

Outline

0. Abstract

1. Background, preceding studies

1-1. Why do we need an accurate voltage-loss analysis technique?1-2. Voltage loss analysis based on detailed balance theory

2. Our work

2-1. Definition of "bandgap" of quantum structure solar cells
2-2. Voltage loss analysis on quantum structure solar cells
2-3. How to reduce the voltage loss in quantum structure solar cells
3. Conclusion

M. Asami et al., IEEE JPV 13, 2023.

2-2 Voltage loss in quantum structure solar cells

Quantum structure solar cells have large voltage loss

2-2 Voltage loss in quantum structure solar cells

We need to design new quantum structure to reduce radiative voltage loss

Outline

0. Abstract

1. Background, preceding studies

1-1. Why do we need an accurate voltage-loss analysis technique?1-2. Voltage loss analysis based on detailed balance theory

2. Our work

2-1. Definition of "bandgap" of quantum structure solar cells
2-2. Voltage loss analysis on quantum structure solar cells
2-3. How to reduce the voltage loss in quantum structure solar cells
3. Conclusion

2-3 How to suppress radiative recombination voltage loss

Steep absorption edge is indispensable for low radiative recombination voltage loss

2-3 How to reduce radiative recombination voltage loss

36

In_{0.09}GaAs

GaAsP_{0.80}

Valence band of light hole

0.211 eV

- suppress the formation of interfacial crystal defects
- High P composition ultra thin GaAsP barrier

Steep absorption edge and high open circuit voltage are realized

- Steep absorption edge successfully suppressed radiative voltage loss
- Low indium composition thick quantum well layer enhanced crystal quality and reduced nonradiative voltage loss

Energy conversion efficiency can be increased to

<u>30.9% (conventional^[*]; 29.5%)</u>

UTB-PSL: Ultra Thin Barrier Planar Superlattice [*] K. Nishioka et al., Solar Energy 90, 2006

Accurate and easily available voltage metrics for the evaluation of quantum structure solar cells were proposed

- →We revealed the importance of radiative recombination voltage loss in quantum structure solar cells
- →This voltage loss analysis can be applied to other type of solar cells such as CIGS and perovskite solar cells

□ Based on the voltage loss analysis, we proposed new quantum structure

- \rightarrow Steep absorption edge is important for suppressing radiative recombination voltage loss \rightarrow New quantum structure solar cell successfully achieved low voltage loss
- →New quantum structure solar cell can enhance the energy conversion efficiency of conventional Ge-based triple junction solar cells from 29.5% to 30.9%

Journals

- Meita Asami, Kasidit Toprasertpong, Kentaroh Watanabe, Yoshiaki Nakano, Yoshitaka Okada, Masakazu Sugiyama, "Comparison of Effective Carrier Mobility between Wire on Well and Planar Superlattice using Time of Flight Measurement," *IEEE Journal of Photovoltaics*, vol. 10, issue 4, pp. 1008-1014, 2020.
- Meita Asami, Kentaroh Watanabe, Yoshiaki Nakano, Masakazu Sugiyama, "Smooth Surface Morphology and Long Carrier Lifetime of InGaP Realized by Low-temperature-grown Cover Layer," *Physica Status Solidi B*, vol. 259, issue 2, 2100305, 2022.
- Meita Asami, Kentaroh Watanabe, Yoshiaki Nakano, Masakazu Sugiyama, "Comparison of Various Voltage Metrics for the Evaluation of the Nonradiative Voltage Loss in Quantum-Structure Solar Cells," *IEEE Journal of Photovoltaics*, vol. 13, issue 1, pp. 95–104, 2023.

