What causes voltage loss in solar cells?

Optimization of quantum structure for high efficiency triple junction solar cells based on voltage loss analysis

Meita ASAMI 3rd year PhD candidate, meita.asami@gmail.com

Riko Yokota, Maui Hino, Li Gan, Kentaroh Watanabe, Yoshiaki Nakano, Masakazu Sugiyama

Abstract

The **lowest voltage loss** was achieved by our new quantum structure solar cell

Outline

0. Abstract

1. Background, preceding studies

1-1. Why do we need an accurate voltage-loss analysis technique? 1-2. Voltage loss analysis based on detailed balance theory

2. Our work

2-1. Definition of "bandgap" of quantum structure solar cells 2-2. Voltage loss analysis on quantum structure solar cells 2-3. How to reduce the voltage loss in quantum structure solar cells **3. Conclusion**

1-1 Background: Multi-junction solar cells

Current

Current is restricted by **the middle cell** due to the excessively high bandgap, **1.40** eV.

M. Yamaguchi *et al*., *Solar Energy* **79**, 2005.

1-1 Background: Multi-junction solar cells

 $\overline{2}$

Solution: **Lattice-matched material** whose bandgap is **1.20-1.35** eV

Efficiency 30% **45**%

1-1 Background: Bandgap adjustor

Superlattice (SL): **InGaAs** that has **narrower bandgap** than GaAs can be used.

Crystal strain is compensated by growing InGaAs and GaAsP thinly and alternately.

^Effective bandgap **1.20-1.35** eV

N. J. Ekins-Daukes *et al.*, *Solar Energy* **68**, 2001.

I. Sayed, *IEEE JPV* **9**, 2019.

1-1 Background: Bandgap adjustor

Quantum confinement effect hinders carrier extraction.

Low current density

M. Sugiyama *et al.*, *J. Phys. D: Appl. Phys.* **46**, 2012.

1-1 Background: Undulated superlattice (WoW)

5

direction of crystal growth and current

- WoW is grown on a 6°misoriented GaAs (0 0 1) substrate at relatively low temperature (530~550℃)
- **PSL is grown on a GaAs (0 0 1) substrate**

*M. Sugiyama *et al*., *Prog. Photovolt: Res. Appl.* **24**, 2016.

1-1 Background: Undulated superlattice (WoW)

6

direction of crystal growth and current

- We expected that Wire on Well can achieve better carrier collection, since there are locally thin quantum barrier areas
	- \rightarrow Carrier tunneling effect can be enhanced at thin barrier

*M. Sugiyama *et al*., *Prog. Photovolt: Res. Appl.* **24**, 2016.

M. Asami *et al.*, *IEEE JPV* **13**, 2023.

- Thinner barrier area may have boosted the tunneling probability of photogenerated carriers
- WoW solar cells achieved **high current density**
- \rightarrow However, open circuit voltage of WoW **solar cells is low**

Why is the open circuit voltage of WoW solar cells low?

Without the information of **bandgap**, we cannot evaluate the **"quality" of voltage ambiguous**

For the development of solar cells, **voltage loss** must be evaluated accurately and the cause of the loss must be clarified

SL: Superlattice

Various combinations of bandgap

Several voltage loss analysis techniques have been proposed in preceding studies

Bandgap offset
$$
W_{OC} = \frac{E_g}{q} - V_{OC}
$$

 \odot W_{OC} must not be applied to quantum structure solar cells [*]

We found that

voltage loss analysis based on **detailed balance theory** can be **applied to quantum structure solar cells**

1-2 Voltage loss analysis based on detailed balance theory

$$
\frac{V_{OC}^{SQ}}{V_{OC}} - V_{OC} = \frac{kT}{q} \ln \frac{f_{SC}^{SQ}}{f_{em,0}^{SQ}} - \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{f_{em,0}^{SQ}}{f_{SC}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}}{f_{SC}^{SQ}} \times \frac{f_{em,0}}{J_{em,0}} \times \frac{J_{SC} - J_{nr}}{J_{SC}}
$$

\n
$$
= \left(-\frac{kT}{q} \ln \frac{J_{SC}}{f_{SC}^{SQ}} \right) + \left(-\frac{kT}{q} \ln \frac{f_{em,0}}{f_{em,0}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{SC}} \right) = \Delta V_{OC}^{SC} + \Delta V_{OC}^{rad} + \Delta V_{OC}^{nonrad}
$$

\nOpen circuit voltage at Shockley-Queisser (SQ) limit calculated from E_g \rightarrow $V_{OC}^{SQ} = \frac{kT}{q} \ln \frac{f_{E_g}^{eq} 1 \times \phi_{sun} dE}{f_{E_g}^{eq} 1 \times \phi_{bb} dE}$
\n
$$
J = 0 = J_{SC} - J_{em,0} \left(\exp \left(\frac{qV_{OC}}{kT} \right) - 1 \right) - J_{nr}
$$

\n
$$
\therefore \frac{V_{OC}}{V_{OC}} = \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}}
$$

\nTherefore, $\frac{V_{OC}}{V_{C}} = \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}}$

 $J_{em,0}\colon$ diode saturation current, $J_{nr} \colon$ non-radiative recombination current

U. Rau *et al.*, Physical Review Applied 7, 2017. ϕ_{sun} : Photon flux of sunlight, ϕ_{bb} : Photon flux of black body radiation

1-2 Voltage loss analysis based on detailed balance theory

$$
\frac{V_{OC}^{SQ}}{V_{OC}} - V_{OC} = \frac{kT}{q} \ln \frac{J_{SC}^{SQ}}{J_{em,0}^{SQ}} - \frac{kT}{q} \ln \frac{J_{sc} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{em,0}^{SQ}}{J_{SC}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \times \frac{J_{em,0}^{SQ}}{J_{em,0}} \times \frac{J_{SC} - J_{nr}}{J_{SC}}
$$

$$
= \left(-\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{em,0}^{SQ}}{J_{em,0}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{SC}} \right) = \Delta V_{OC}^{SC} + \Delta V_{OC}^{rad} + \Delta V_{OC}^{nonrad}
$$

For the calculation of open circuit voltage Three types of voltage loss at SQ limit, we have to define **effective bandgap** E_q of solar cells

non-radiative recombination voltage loss radiative recombination voltage loss Short circuit current voltage loss

13

U. Rau *et al*., Physical Review Applied 7, 2017.

Outline

0. Abstract

1. Background, preceding studies

1-1. Why do we need an accurate voltage-loss analysis technique? 1-2. Voltage loss analysis based on detailed balance theory

2. Our work

2-1. Definition of "bandgap" of quantum structure solar cells 2-2. Voltage loss analysis on quantum structure solar cells 2-3. How to reduce the voltage loss in quantum structure solar cells **3. Conclusion**

All of these methods are not applicable to quantum solar cells cf. M. Asami *et al*., *IEEE JPV* **13**, 2023.

We propose a new method to define the "bandgap" of quantum structure solar cells

The main objective of lowering the bandgap of the middle cell is to enhance current density

1. A peak at the highest energy is

regarded as a standard bandgap E_{g}^{st}

1-2 Voltage loss analysis based on detailed balance theory

$$
\frac{V_{OC}^{SQ}}{V_{OC}} - V_{OC} = \frac{kT}{q} \ln \frac{f_{SC}^{SQ}}{f_{em,0}^{SQ}} - \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{f_{em,0}^{SQ}}{f_{SC}^{SQ}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}}{f_{SC}^{SQ}} \times \frac{f_{em,0}}{J_{em,0}} \times \frac{J_{SC} - J_{nr}}{J_{SC}}
$$

\n
$$
= \left(-\frac{kT}{q} \ln \frac{J_{SC}}{f_{SC}^{SQ}} \right) + \left(-\frac{kT}{q} \ln \frac{f_{em,0}}{f_{em,0}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{SC}} \right) = \Delta V_{OC}^{SC} + \Delta V_{OC}^{rad} + \Delta V_{OC}^{nonrad}
$$

\nOpen circuit voltage at Shockley-Queisser (SQ) limit calculated from E_g \rightarrow $V_{OC}^{SQ} = \frac{kT}{q} \ln \frac{f_{E_g}^{eq} 1 \times \phi_{sun} dE}{f_{E_g}^{eq} 1 \times \phi_{bb} dE}$
\n
$$
J = 0 = J_{SC} - J_{em,0} \left(\exp \left(\frac{qV_{OC}}{kT} \right) - 1 \right) - J_{nr}
$$

\n
$$
\therefore \frac{V_{OC}}{V_{OC}} = \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}}
$$

\nTherefore, $\frac{V_{OC}}{V_{C}} = \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}}$

 $J_{em,0}\colon$ diode saturation current, $J_{nr} \colon$ non-radiative recombination current

U. Rau *et al.*, Physical Review Applied 7, 2017. ϕ_{sun} : Photon flux of sunlight, ϕ_{bb} : Photon flux of black body radiation

2-2 Voltage loss analysis on quantum structure solar cells

$$
V_{OC}^{SQ} - V_{OC} = \frac{kT}{q} \ln \frac{J_{SC}^{SQ}}{J_{em,0}^{SQ}} - \frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{em,0}^{SQ}} = -\frac{kT}{q} \ln \frac{J_{em,0}^{SQ}}{J_{SC}} \times \frac{J_{SC} - J_{nr}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \times \frac{J_{em,0}}{J_{em,0}} \times \frac{J_{SC} - J_{nr}}{J_{SC}}
$$

\n
$$
= \left(-\frac{kT}{q} \ln \frac{J_{SC}}{J_{SC}^{SQ}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{em,0}^{SQ}}{J_{em,0}} \right) + \left(-\frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{SC}} \right) = \Delta V_{OC}^{SC} + \Delta V_{OC}^{rad} + \Delta V_{OC}^{nonrad}
$$

\n
$$
V_{OC}^{SQ} = \frac{kT}{q} \ln \frac{\int_{E_g}^{S} 1 \times \phi_{sun} dE}{\int_{E_g}^{S} 1 \times \phi_{bb} dE} = \frac{kT}{q} \ln \frac{\int_{E_g}^{S} \max\{Q_e\} \times \phi_{sun} dE}{\int_{E_g}^{S} \max\{Q_e\} \times \phi_{bb} dE} = \frac{kT}{q} \ln \frac{\int_{Z_{cm}}^{max}}{\int_{P_{em,0}}^{max}} \times \frac{J_{cm}^{nonrad}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{cm}^{nonrad}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{cm}^{nonrad}}{J_{em,0}} = -\frac{kT}{q} \ln \frac{J_{cm}^{nonrad}}{J_{cm}^{nonrad}} = -\frac{kT}{q} \ln \frac{J_{cm}^{nonrad}}{J_{SC}} = -\frac{kT}{q} \ln \frac{J_{cm}^{nonrad}}{J_{sc}} = -\frac{kT}{q} \ln \frac{J_{cm}^{nonrad}}{J_{sc}} = -\frac{kT}{q} \ln \frac{J_{SC} - J_{nr}}{J_{SC}}
$$

\n
$$
\Delta V_{OC}^{SC} = -\frac{kT}{q} \ln \frac{J_{SC}}{J
$$

 \equiv

 ϕ_{sun} : Photon flux of sunlight, ϕ_{bb} : Photon flux of black body radiation

This modification is needed for low EQE samples.

Without this modification, ΔV_{OC}^{rad} sometimes becomes negative value (unphysical situation)

$$
V_{OC}^{SQ} = \frac{kT}{q} \ln \frac{\int_{E_g}^{\infty} 1 \times \phi_{sun} dE}{\int_{E_g}^{\infty} 1 \times \phi_{bb} dE} = \frac{kT}{q} \ln \frac{\int_{E_g}^{\infty} \max\{Q_e\} \times \phi_{sun} dE}{\int_{E_g}^{\infty} \max\{Q_e\} \times \phi_{bb} dE} = \frac{kT}{q} \ln \frac{\int_{SC}^{max}}{\int_{P_{mm,0}}^{max}}
$$
\n
$$
\frac{\text{We modified the conventional method}}{\text{Short circuit current voltage loss}}
$$
\n
$$
\frac{\Delta V_{OC}^{SC}}{=} -\frac{kT}{q} \ln \frac{\int_{SC}^{max} \Delta V_{OC}^{rad}}{\int_{SC}^{max}} = -\frac{kT}{q} \ln \frac{\int_{P_{mm,0}}^{max} \Delta V_{OC}^{normal}}{\int_{P_{mm,0}}^{max}} = -\frac{kT}{q} \ln \frac{\int_{SC}^{max} - \int_{nr}}{\int_{SC}} \text{radiative recombination voltage loss}
$$
\n
$$
\frac{\text{radiative recombination voltage loss}}{\text{non-radiative recombination voltage loss}}
$$

 ϕ_{sun} : Photon flux of sunlight, ϕ_{bb} : Photon flux of black body radiation

2-2 Intuitive way to understand each voltage loss

An ideal solar cell A quantum structure solar

generated current non-radiative recombination radiative recombination **cell**

2-2 Short circuit current voltage loss

An ideal solar cell

A quantum structure solar

generated current cell non-radiative recombination radiative recombination

2-2 Short circuit current voltage loss

Short circuit current voltage loss is usually negligibly small

2-2 Short circuit current voltage loss

An ideal solar cell A quantum structure solar cell

An ideal solar cell does not have any non-radiative recombination voltage loss

Non-radiative recombination voltage loss can be evaluated by either EQE or EL measurements [*]

[*] M. Asami *et al.*, *IEEE JPV* **13**, 2023.

An ideal solar cell A quantum structure solar cell

generated current non-radiative recombination radiative recombination

Outline

0. Abstract

1. Background, preceding studies

1-1. Why do we need an accurate voltage-loss analysis technique? 1-2. Voltage loss analysis based on detailed balance theory

2. Our work

2-1. Definition of "bandgap" of quantum structure solar cells 2-2. Voltage loss analysis on quantum structure solar cells 2-3. How to reduce the voltage loss in quantum structure solar cells **3. Conclusion**

31

M. Asami *et al.*, *IEEE JPV* **13**, 2023.

2-2 Voltage loss in quantum structure solar cells

Quantum structure solar cells have large voltage loss

2-2 Voltage loss in quantum structure solar cells

We need to design new quantum structure to reduce radiative voltage loss

Outline

0. Abstract

1. Background, preceding studies

1-1. Why do we need an accurate voltage-loss analysis technique? 1-2. Voltage loss analysis based on detailed balance theory

2. Our work

2-1. Definition of "bandgap" of quantum structure solar cells 2-2. Voltage loss analysis on quantum structure solar cells 2-3. How to reduce the voltage loss in quantum structure solar cells **3. Conclusion**

2-3 How to suppress radiative recombination voltage loss

34

Steep absorption edge is indispensable for low radiative recombination voltage loss

2-3 How to reduce radiative recombination voltage loss

0.211 eV

 $GaAsP_{0.80}$

Valence band of light hole

रे

- suppress the formation of interfacial crystal defects
- . High P composition ultra thin GaAsP barrier

Steep absorption edge and high open circuit voltage are realized

- Steep absorption edge successfully suppressed radiative voltage loss
- Low indium composition thick quantum well layer enhanced crystal quality and reduced nonradiative voltage loss

Energy conversion efficiency can be increased to

30.9% (conventional^[*]; 29.5%)

UTB-PSL: Ultra Thin Barrier Planar Superlattice [*] K. Nishioka *et al*., *Solar Energy* **90**, 2006

Accurate and easily available voltage metrics for the evaluation of quantum structure solar cells were proposed

- \rightarrow We revealed the importance of radiative recombination voltage loss in quantum structure solar cells
- \rightarrow This voltage loss analysis can be applied to other type of solar cells such as CIGS and perovskite solar cells

Based on the voltage loss analysis, we proposed new quantum structure

- \rightarrow Steep absorption edge is important for suppressing radiative recombination voltage loss \rightarrow New quantum structure solar cell successfully achieved low voltage loss
- \rightarrow New quantum structure solar cell can enhance the energy conversion efficiency of conventional Ge-based triple junction solar cells from 29.5% to 30.9%

Journals

- 1. Meita Asami, Kasidit Toprasertpong, Kentaroh Watanabe, Yoshiaki Nakano, Yoshitaka Okada, Masakazu Sugiyama, "Comparison of Effective Carrier Mobility between Wire on Well and Planar Superlattice using Time of Flight Measurement," *IEEE Journal of Photovoltaics*, vol. 10, issue 4, pp. 1008-1014, 2020.
- 2. Meita Asami, Kentaroh Watanabe, Yoshiaki Nakano, Masakazu Sugiyama, "Smooth Surface Morphology and Long Carrier Lifetime of InGaP Realized by Low-temperature-grown Cover Layer," *Physica Status Solidi B*, vol. 259, issue 2, 2100305, 2022.
- 3. Meita Asami, Kentaroh Watanabe, Yoshiaki Nakano, Masakazu Sugiyama, "Comparison of Various Voltage Metrics for the Evaluation of the Nonradiative Voltage Loss in Quantum-Structure Solar Cells," *IEEE Journal of Photovoltaics*, vol. 13, issue 1, pp. 95–104, 2023.

