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Much of Chemical Data Is in Fuzzy
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Finding the Best Pancake Recipe In the
Conventional Way

Correlating descriptors with Time Banana Milk Egg Rating &
ratings

30 1 100 0 4

Machine learning models can
correlate descriptors of our 10 0 129 0,5 5

recipes to ratings
5 2 140 1 3,4

In this way, we could score

new recipes 5 5 80 ) )



Making
pancakes:
Generalized
Learning on
Scale

Large-language models can
answer natural language
queries.

It can do without being
explicitly trained to do so.

What are a couple of meals | can make with this?

. Based on the items visible in the fridge, here are a couple of meal ideas:

1) Yogurt parfait: Layer yogurt, strawberries, and blueberries in a bowl or

jar. Top with honey or nuts for added texture and flavor.
2) Carrot and hummus wrap: Spread hummus on a tortilla or wrap. Top with

shredded carrots and any other desired veggies. Roll up and enjoy!



Actionable Machine Learning Powered By
Large Language Models

fac‘tionaxble_ and obse,rve,d\ seuow\ o’ose_r‘ved /act?omble andl observem

uptoke / 3/ g

TRE N

o

@ wdx 2l -0 &0
-B==~42308000Cr%
c h

R

“Conventional” ML works on data we have little direct control over.




Transforming Chemistry
With Transformers

Kevin M Jablonka (HIPOLE Jena)
@kmjablonka | mail@kjablonka.com | jablonkagroup.uni-jena.de



LLMs Can Play Many Roles

dulll

s,

I

J

(b4
[

Il
W

(

)ity

[

|

I

wiy
T

\!
)

U o
\I\\//

\

JAN \“W'/h 1l n/l//ﬂ//// I

\!
\

\
\ |

e

Joe——]
—

FE
L9

\‘\q' ‘ .
")

\\
X

Storage of fuzzy

knowledge Director Curator
. . Orchestrating tools and Extracting structured
Making experience and . .
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knowledge accessible

Digital Discovery 2023, 2 (5), 1233—1250



Predictions as Text-Completion

1. Tabular dataset with
string representation of
system
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What @3d4te phase of OsUf@@@
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nase of NbosTag

nase of Alo.1Wo 4"

nase of CrosFeg

completion
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57

single-plsi@e-phase
single-plstgle-phase
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Nature Machine Intelligence 2024, 6, 161-169. /w Andres Ortega, Philippe Schwaller, and Berend Smit
First in Al for Accelerated Materials Design NeurlPS 2022 Workshop, 2022 (before ChatGPT)



Outperforms the State-of-the-Art

Domain-specific model (RF)
Tree-based model with hand-
tuned features on about 1000

points
npj Computational Materials 2020, 6 (1).

Automatminer
Automatic machine learning that

optimizes featurizers and models
npj Computational Materials 2020, 6 (138).

CrabNet
Composition-based transformer

model
npj Computational Materials 2021, 7 (77).

accuracy
GPT-3
L cTTTTTTTI === gtljztomatminer
0.9 B ——
CrabNet
0.8 1
0.7 -
0 50 100 150 200

number of training points
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Works for Different Representations
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Across Chemical Space
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Actionable Machine Learning Powered By

Large Language Models
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“Conventional” ML works on data we have little direct control over.
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Reactivity Ratio Determines Co-Polymer Architecture ° e
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Structured Data Extraction for

Copolymerization Reactions

Depends on
copolymerization
mechanism

Depends on solvent

Table 1 Apparent reactivity ratios for STY/MMA as calculated with
the EVM method from data by San Roman et al.* and distribution
coefficients K calculated according to equations (10) and (11)

Solvent Iy rs ry’s K (fromt,) K (from rg)
Benzene 044* (.51 0.23 0.97 0.92

(043 (0.51) (0.22) (095 (0.93)
Chlorobenzene 047 043 0.20 1.04 1.10

(049) (047) (0.23) (1.09) (1.00)
Benzonitrile 0.65 0.47 0.31 1.44 1.00

(0.62) (0.38) (0.24) (1.36) (1.24)
Bulk'? 0.45 047 0.21 1.00 1.00

— o | — el | — S — e —

“Polymer composition determined by n.m.r.
* Polymer composition determined by carbon analysis

Polymer 1993, 34 (5), 1032—1037.
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Structured Data Extraction for
Copolymerization Reactions

. 0.03 1
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Comparing VLMs and LLMs

Conversion — <
Into =
|mage ;_- V-LLM

‘temperature’: 100,

|||| vy o U LRI,

|
|

‘monomer 2’:’CCCN’
r1:1.1,
‘r 2:1.1

}
OCR LLM /
Collection of ‘ Structured
Journal
_ Datla
articles

‘monomer_1’;: ‘CCCQO’,
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Comparing VLMs
and LLMs

Only the vision models have
acceptable performance

information
completeness

fuzzy matching
score

—— GPT4 Vision high res
—— GPT4 Vision low res
— GPT4-0

number of calls

efficiency
time
efficiency
cost
efficiency
precision
—— GPT4 with Assistant —— GPT3.5 turbo + NOUGAT
— Claude Opus Vision —— GPT3.5 turbo + Marker
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#  Polymer paper

Quality

## Results "polymerization_type": "free radical",
"solvent": "carbon tetrachloride",

Classifier
Can Futher

Markdown document "reaction_constants": {

"constant_1": 0.52,
"constant_2": 0.06

s
"reaction_constant_conf": {
"constant_conf_1": 0.05,
OOS "constant_conf_2": 0.01
s
"determination_method": "Kelen-Tudor",
"monomers": [
Performance <o
P P P ] "styrene"
copolymerizations VLM ]
i }
BN = >
(@) ——
BOOSt from 77 /O =— structured data
accuracy to 94%
Image
VLM
A 4
Random forest
classifier
J > probability of correct extraction

quality scores
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From Text to Insight: Large
Language Models for Chemical
Data Extraction

Introduction and background
Overview of the working principles

of LLMs

A. Structured Extraction Workflow

1. Obtaining data N~

2. Cleaning v

3. Strategies to tackle context

window limitations

4. Choosing the learning paradigm
5. Beyond text

6. Agents

7. Constrained generation to
guarantee syntactic correctness

8. Evaluations

B. Case Studies

9. Research articles vs datasets in

chemistry and materials science

10. Collecting data on the
synthesis procedures of bio-based
adsorbents

11. Retrieving data from

chacolgenide perovskites

12. Validation case study:
Matching NMR spectra to
composition of the molecule

13. Collecting data for reactions

procedures

= ) (2 o (D)

From Text to Insight: Large Language Models
for Chemical Data Extraction

About this book

Structured data is at the heart of machine learning. LLMs offer a convenient way to generate structured data
based on unstructured inputs. This book gives hands-on examples of the different steps in the extraction

workflow using LLMs.

You can find more background on the topics covered in this book in our review article.

How to use this book?

This book is based on Jupyter notebooks. That is, beyond simply reading along, you can also run the

notebooks yourself. You have different options to do so.

Running it on your own machine

If you have a reasonably modern computer you will be able to run many of the notebooks on your own
hardware. Note, however, that certain notebooks will need to be run on GPUs. Those notebooks have a note

about this on the top of the notebook.

In addition to hardware, you will also need some software. All relevant dependencies can be installed via the

package for this online book. [N

Overall, you will need to run through the following steps. Note that we currently only support Linux and Mac. If
you want to run the notebooks on Windows, we recommend that you install WSL and then run the notebooks

from the Linux environment.

0. Use Python 3.11 (the code might also work on other versions, but we only tested 3.11)
1. Clone the repository

git clone https://github.com/lamalab-org/matextract-book.git
Then, go into the folder
cd matextract-book

2. (Optional, but recommended) Create a virtual environment:

python3 -m venv .venv

Matextract.pub and arXiv:2407.16867

i= Contents

| About this book
How to use this book?
Table of Contents
Acknowledgment
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Mara Schilling-  Martino Rios
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Maria Victoria Gil 22



How Good Are Current Models Compared to Experts?

A chem-bench Leaderboard About Blog ‘/@,5 ‘:‘

Are you better in chemistry
than Al?

Compete with e n chemistry tasks to

Test yourself at chembench.org 23
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Large Corpus Testing Diverse Skills

Toxicity / Safety
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Physical Chemistry
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On Average:
Superhuman
Performance
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Performance
Depends on
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Connecting Tools

Conventional user interfaces are rigid
chemistry is flexible

LLMs can do semantic search

LLMs can dynamically create
interface components

LLMs can reason about the data

ChemAssist

Ask me a question and I'll do my best to find an answer

Enter your question

Query

28



Home

Search for samples Q

Group: | Mine v |Modified: | Last month /|

If you are using those tools please don't forget to cite us !

The C6H6 NMR repository: An integral solution to control the flow of your data from the magnet to the public.
Patiny L, Zasso M, Kostro D, Bernal A, Castillo AM, Bolarfios A, Asencio MA, Pellet N, Tod4 M, Schloerer N, Kuhn

S. Magnetic Resonance in Chemistry. 2017.

Nature Chemistry 2022, 14 (4), 365—-376.
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New Collection 9 Q;i‘,u 3 ”zI:‘l“w ~~~~~ FERETT f«:f,ﬁ-fu IJ 4 C21 HN15BrF3NO 4 ' 341.0 m 0.00 mi | 0.7071 mmol | nd | mmolt | 71% n
Joachim () NJ-R1544 Br NAc dienophile ) B i
@ o P e
Fabian + (A RLL, el K
) g ” Name Status Temperature
<% My shared collections (1.0 | , ,
CF3 dienophile precursor Successful X w e 40 G
¢ Shared with me (] NJ-R1547 Br NAc dienophile precursor T 1 O
@ " b oy o Start Stop Duration
*% Synchronized with me e ey —
« B e Show 15 DD/MM/YYYY hhimm:ss | ©| | DD/MM/YYYY hhvmm:ss RO, E Duration B > | 24
& Inbox Q’J P w—e o : ‘ i
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Chatting
With Your

Data

Matthew Evans, Joshua D. Bocarsly, Ben E.
Smith in Digital Discovery 2023, 2 (5), 1233—

1250

v

LLM Chat Block with contextual data (powered by GPT-3.5-turbo) & P X

Hello! | am your virtual assistant and | am here to help you manage your
experimental data. What can | help you with today?

Please make me a mermaid flowchat showing how this cell was made from
other items in the database

Certainly! Here is a Mermaid flowchart that shows how the cell with item_id
Jjdb1-1_el1_c1 was made from other items in the database:

ABJ00140
Sodium carbonate

——was used to create

jdb1-1
—was used to create

NaCoO2 made by solid state reaction
XxhsjttTzsrdgtoy | oo cre{'
Cobalt (I1,111) Oxide
xxsl‘?t?:?”” was used to create
u \

Jd1 1 el ——was used to create— e
NaCoO2 electrode NaCo02 coin cell

LEbLbanT ——was used to create
Kynar HSV 900 PVDF monomer

XXdvmz2ntéow05xy8
N-methyl 2-pyrrolidinone

—was used to create

In this flowchart, each rectangular box represents an item in the database,
and the arrows between the boxes represent the relationships between the
items. For example, SM1 and SM2 were used to create sample JDB1-1, which
was then used to create sample E1, which was finally used to create the cell

C1.
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Binding Molecular Embeddings

Graph Fingerprint
N\
> @
What if you can find / ‘\ / \
the procedure that
best matches the SELFIES
spectrum you want to < > I < >
see’? NMR / \ MassSpec
Architecture: Girdhar, Rohit, et al. Proceedings of the E ] < >
IEEE/CVF Conference on Computer Vision and Pattern
Fecognition. 2023 SMILES Description
AldMat 2024 Spotlight

Adrian Mirza
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Building Matching Structures That Match Spectra

/ Align spectra and SMILES encoders \ / Similar compounds query from database \

SMILES ' W l - l —
L1 ”W CH.BrO; \@f\
3 R —| CgH,BrO; — e
33;- L C,0HoBroO; j@(\
ckgntrastively trained L R e e | /\/O
| "H NMR 3C NMR PubChem

\ embeddings / \ l /

/— GA applied on retrieved starting population ﬁ /— Embed molecules and find closest compounds —\

°C NMR similarity ranklng

I —| mEm— N
\ﬂ)‘\ Best score 0.86 H NMR MU|tlmOfD|a| \ﬂ)‘\
. or embedding
\ Br

NG

Br O Spectra embedding
GrathA 0
/\/
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Spectrum To Structure

Perfect score
Top 1[N

Top 5 [
Top 10
Found (I

©o 0 0 0 0 o o o o o
‘@‘Q‘@‘V‘&‘@‘A‘@‘\Q

¢\'

fraction of correct predictions
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Spectrum To Structure

60

40

count

20

0.6

0.7 0.8

cosine similarity

0.9

" Found

Ajlaefiwis 1o9luad

|_|______________________________

B True
B False
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Multimodal Embeddings for Photovoltaics

. Information /
2 jV curves hy — — Nying i i
I Multi-modal retrieval
binding model
. Anomaly /
X; B BN /5 X;
/| PLimages h @ Mbing detection J
B @"C T T
8 ' Y Py = i [ WK e
; W | e | L e
“ /i analysis
Device | Circuit diagram| .
X — g X
stack hy Y iy generation /
Large language
Ootical model
X ptica PL /
" spectra h Mo generation o
X, Time-resolved 2 I Protocol X
jV curves L LIM| prediction "
’ G=m=ul
o
Crystal C+D Materials :
X e >
¢ structure ho Y generation Yo

SOL-Al (Helmholtz Foundation model initiative)



Testing the
Limitations of
Multimodal

Models:
MaCBench

S\
L YN
Nawaf
Alampara

Martino Rios
Garcia

/w Anoop Krishnan (IIT Dehli)
NeurlPS Al4Mat 2024 Spotlight

Mara Schilling-
Wilhelmi

( Lab scenarios

Options:

This is a photograph
from a chemistry lab.
The apparatus is 1n
operation. What is the
safety issue here?

a) The setup should be
placed perpendicular

to the ground

b) There is risk of the
apparatus falling down
c) The round bottom
flask is not touching
the oil bath

d) Everything 1is correct,
no safety risk

\

J

Options:

a) Funnel

b) Separatory Funnel
c) Chromatography Column
d) Burette

In this photograph,
what do you see?

\

e Lab scenario comparisons ~N

The chemist wants to separate two liquids with
a separation funnel. Which is image, A or B,

\\>shows the correct protocol?

/

/ Handdrawn molecules
What is the SMILES of this molecule?
o i, a) C[Al](C)NC1=NC=CS1
j::jﬁ B b) C(F)(F)(F)S(=0O)NP(=S) (N)N
ke c) C\1=C/C(=N\Br)/C(=C/C1=N/Br)Cl
! d) C/C(=C\C(C(C#C)[Sil(C)(C)C(C)

/ Table understanding

GAS Tg(degC) Tx(degC) T p(degC) S (K)

Ge0.05As0.3450.61
Ge0.1As0.2850.62
Ge0.15As0.2250.63
Ge0.2As0.1650.64
Ge0.25As0.150.65

Ge0.3As0.0450.66

(1 - 2)[Ge 0.25 As 0.1 S 0.65]-xGaS 3/2-xCsBr
x=0.05

x=0.1

x=0.15

221
240
267
296
346
420

296
295
245

575
589
600
564
549
578

502
474
575

604
609
620
613
636
618

541
523
600

20.8

136

2 composition?

23.0
28.5

9.1

Do all the material

14.1

15.4

compositions present

== in the table add up?

Does this table contai;\
any material

k (C)C) (0) [S11(C) (C)C) /CHC
\_ J
\

/ Band structures

_ What 1is the

' characteristic of
v | the electronic
structure 1in

the image?

E—Efermi (€V)

a) metallic

\ w0z s sw ez 159 /
/Reasoning about crystal structures ~
ng What is the crystal
o system of this
s smssomee crystal structure?
a) monoclinic
b) orthorhombic
| c) tetragonal
- d) hexagonal
e) rhombohedral
f) cubic
\- J

=S| AF b) direct gap

e I : = I\ " - . y . .
\ ' "t ] W:veVelc_torH S ' _Dleonsity?)fstatle: C) -I nd-l reCt gap /
/'AFM images ~
164.86 nm HOW many go_l-d
140.00 nanoislands
12000 can be

10000 observed 1in
000 the image?
600 Consider only

4000 those with a
2000 positive

000 height as gold
-2000 nanoislands.
1000

8000

-80.00
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AFM Image Analysis

—— (GPT4V
- (GeminiPro
—a— (Claude3V

Testing the
Limitations
of ,
Multimodal AN\ L
Models

b Equipments

LLab Proto¢ol Comparison

Electronic Structure

|dentification

Crystal Structure
38



Predicting Material
(Properties) Using LLMs

Language models can generate molecules, materials, and protein binding sites directly

in three dimensions as XYZ, CIF, and PDB files

Daniel Flam-Shepherd!*? and Aldn Aspuru-Guzik!: %34

! Department of Computer Science, University of Toronto, Toronto, Ontario M5S 2E/, Canada
' 2 Vector Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Canada
 Department of Chemistry, University of Torewte Towamtn Omiawic MEY 17 (Mamoda

* Canadian Institute for Advanced Researcl

Language models are powerful tools for molecul:
to parse molecular graphs into linear string represe
proach has been very successful, however, it is limit
represented by a graph— like organic molecules— w
protein binding sites require a more complete repr:
of their atoms in space. In this work, we show &
modifications, trained using next-token prediction—
dimensions from various substantially different distr
demonstrate that language models trained directly
formats like XYZ files, Crystallographic Informatior
can directly generate molecules, crystals, and prot
more, despite being trained on chemical file sequer
comparable to state-of-the-art models that use gra
well as other domain-specific 3D generative mode
necessary to use simplified molecular representation
are powerful generative models capable of directly ¢
very different structures.

Crystal Structure Generation with Autoregressive

Large Language Modeling

Luis M. Antunes*!, Keith T. Butler?, and Ricardo Grau-Crespo*!

l.m.antunes@pgr.reading.ac.uk; r.grau-crespo@reading.ac.uk
2 Department of Chemistry, University College London, WC1H 0AJ, United Kingdom.

Abstract

The generation of plausible crystal structures is often the first step in predicting
the structure and properties of a material from its chemical composition. Quickly
generating and predicting inorganic crystal structures is important for the discovery
of new materials, which can target applications such as energy or electronic devices.
However, most current methods for crystal structure prediction are computationally
expensive, slowing the pace of innovation. Seeding structure prediction algorithms
with quality generated candidates can overcome a major bottleneck. Here, we intro-
duce CrystaLLM, a methodology for the versatile generation of crystal structures,
based on the autoregressive large language modeling (LLM) of the Crystallographic
Information File (CIF) format. Trained on millions of CIF files, CrystaLLM focuses
on modeling crystal structures through text. CrystaLLM can produce plausible
crystal structures for a wide range of inorganic compounds unseen in training, as
demonstrated by ab initio simulations. The integration with predictors of forma-
tion energy permits the use of a Monte Carlo Tree Search algorithm to improve the
generation of meaningful structures. Our approach challenges conventional repre-
sentations of crystals, and demonstrates the potential of LLMs for learning effective
‘world models’ of crystal chemistry, which will lead to accelerated discovery and
innovation in materials science.

Published as a conference paper at ICLR 2024

FINE-TUNED LANGUAGE MODELS GENERATE STABLE
INORGANIC MATERIALS AS TEXT

Nate Gruver! Anuroop Sriram? Andrea Madotto?
Andrew Gordon Wilson' C. Lawrence Zitnick? Zachary Ulissi?

INYU

lDepartment of Chemistry, Unwversity of Reading, Whiteknights, Reading RG6 6DX, United Kingdom.

2Meta FAIR

ABSTRACT

We propose fine-tuning large language models for generation of stable materials.
While unorthodox, fine-tuning large language models on text-encoded atomistic
data 1s simple to implement yet reliable, with around 90% of sampled structures
obeving nhvsical constraints on atom nositions and charges. Using enerev above

Under review as a conference paper at ICLR 2024

LLM-PROP: PREDICTING PHYSICAL AND ELEC-
TRONIC PROPERTIES OF CRYSTALLINE SOLIDS FROM
THEIR TEXT DESCRIPTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The prediction of crystal properties plays a crucial role in the crystal design pro-
cess. Current methods for predicting crystal properties focus on modeling crys-
tal structures using graph neural networks (GNNs). Although GNNs are power-
ful, accurately modeling the complex interactions between atoms and molecules
within a crystal remains a challenge. Surprisingly, predicting crystal properties
from crystal text descriptions is understudied, despite the rich information and ex-
pressiveness that text data offer. One of the main reasons is the lack of publicly
available data for this task. In this paper, we develop and make public a bench-
mark dataset (TextEdge) that contains text descriptions of crystal structures with
their properties. We then propose LLM-Prop, a method that leverages the general-
purpose learning capabilities of large language models (LLMs) to predict physi-
cal and electronic properties of crystals from their text descriptions. LLM-Prop
outperforms the current state-of-the-art GNN-based crystal property predictor by
about 4% on predicting band gap, 3% on classifying whether the band gap is direct
or indirect, and 66% on predicting unit cell volume. LLM-Prop also outperforms a
finetuned MatBERT, a domain-specific pre-trained BERT model, despite having 3
times fewer parameters. Our empirical results may highlight the current inability
of GNNss to capture information pertaining to space group symmetry and Wyckoff
sites for accurate crystal property prediction.
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But They Cannot Even Do Math!

. 241 - (-241) +1

241 - (-241) + 11s equivalent to 241 + 241 + 1, which simplifies to 483 + 1. So
241 - (-241) + 11s equal to 484.

ChatGPT 40 4

N ‘ ]
Y

How many R's are in the word
strawberry

® There are two "R"s in the word "strawberry."

» PP

https://community.openai.com/t/chatgpt-simple-math-calculation-mistake/62780
https://prompt.16x.engineer/blog/why-chatgpt-cant-count-rs-in-strawberry
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~ Data collection ~
=
—
pretraining finetuning
N _/
~ Inductive biases ~
( . 2

oo

bonding

symmetry

b

O&
o5

o0
ob

~ Representations

Composition

Atom Sequences
Atom Sequences ++
SLICES
Crystal-text-LLM
CIFP,

Z-matrix

CIF Symmetrized

Local-Env

J

=
5 m
periodicity composition  coarse graining
N\
arXiv 2406.17295

AldMat 2024 Spotlight

ed|en| (eO|en| [(ed|en| [eo|ec
e3%E) (3E3) [RED) (B3R
B B8 BEY e

]

|5D]H |5|':l]en
Opjop| (OO

esles (288

Benchmark

Santiago Miret
(Intel Labs)

/
pretraining
data scaling
property
prediction
shear bulk formation
modulus modulus energy
language jHHE Question: What is the iproperty} of the
modeling 1MatText Representation$?
S jHHE Response: 1} )
/ Ana[llyi;:llsl ~
tokenization attention hypothetical
\_ potential y

Nawaf Alampara
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Encoding Inductive Biases

Composition
SLICES
CIF P
Crystal-text-LLM

Atom Sequences
Atom Sequences++
CIF Symmetrized
Z-Matrix

Local-Env

< < <

< S < < <

< <

v
v

Novel Representations
Vv v
v

Stoichiometry @ Bonding Geometry Symmetry Periodicity Coarse Graining

v

< <
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Geometry and Scale Do Not Help!
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Geometry and Scale Do Not Help!

30Kk
100K
300k
2m

There is some small improvement with
scale
But does not beat baselines

RMSE

Geometric information is not
effectively leveraged
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Little Attention Paid to Numbers

_ N

wn =
S 3 = o
=R — = T o5 m
3 —— L — [ | [ —
Q 2 - — W g - O w %’ O o = = o =
= = Z 5 N =2 35 = = - L = —
= o 2 =z =2 z $8§5|I8§<j
2 0 . ] _ . ] ‘_ . : ] _ HEE e
(U | | | | | | | ] ] ] ] ] ] ] ] ]
4
= SLICES Crystal-text-LLM CIF P, CIF Symmetrized

Overall contribution over layers per
token class
Most attention iIs on atoms

| [ATOMS]

] [MISC]
_ ] [NONE]

NUMS]

Z-Matrix
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Separating Data From Model Effects

E =aE + (1 — a)E

comp pos

Dielectric
1.0r
0.2 r
0 0 %
5
= = 01t
0.0~
0.0 -

O 04 06 1
04

k N N
= Ywm+ Y V) + Y Y V( —r, ) a € (0,1)
k=1 i=1 i=1 jeN (i)
Feomp Epo
KVRH/GVRH Perovskites
—eo— CIF P4
—e— /-matrix
—e— SLICES
—e— (Composition
Crystal-text-LLM
—e— Atom Sequences
—e— Daseline

O 04 06 1
04

O 04 06 1
04
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- Approach and Techniques

data capture
and mining

MattAssist Chat with MattAssit @

Export Invite collaborators Chat Settings

History

| am looking to nanopattern a gold surface

in a pH-responsive way at room temperature.
The system must withstand corrosive conditions.
Where should | start?

Various system of pH responsive block co-polymers, many contain
poly-N,N-diethylaminoethyl methacrylate (PDEAEMA) blocks.

data

management

You can find an ovierview of the lineage along with trustworthiness below. {

collaborations
with experimental

groups and engineers
A

eeeeeeeeeeeeeeeeeeeeeeeeeeeee

Corrosive conditions have not been investigated for this system
but for systems with benzotriazole.

Hence | recommend you try the following experiment ...

API

driven with autonomous agents

human-in-the-loop
active learning

)

generative modeling
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Develop Materials
That Work iIn the
Real World With our

Digital Assistants




