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= Introduction — motivation for thin-film
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1. Introduction
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= Thin-film PV technologies

School of Photovoltaic and Renewable Energy Engineering




2. Thin-Film PV Technologies

= Commercial
— CdTe
— CIGS
— a-Si/uc-Si
= Research
— CZTS
— OPV

— Thin crystalline silicon
= \Wafer transfer
» Thin polycrystalline
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3. Thin Polycrystalline Si

= Solid Phase
— SPC
Yy \[e:
= Liguid Phase
— ZMR
— EBC
- LC
. UV
= Visible
= IR
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= Diode laser crystallised thin-film pc-Si
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= Diode laser crystallised thin-film pc-Si

— Material and device preparation
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4. Material Preparation

808 nm CW
LIMO diode laser

I — A TSR

undppedlg-Si —— — ~10 ym
B-doped _—=
Intermediate layer } ~150 nm
Glass — 3 mm
5x5 cm? _
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= Many 23 twin boundaries
= Defect density < 5e7 cm
= Mobility of 300-450 at ~1e16 cm

Optical microscope
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6. Device Fabrication

n contact pad
P p contact pad

Aluminium
Resist
n+

Cell area = 1 cm?
p_

Intermediate _—"
layer

Glass/
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7. Light IV
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8. Improvement path

First devices
with SiO, IL
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8. Improvement path

First devices ®
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8. Improvement path

First devices ®
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8. Improvement path
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— Intermediate layers
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10. Intermediate Layer

n contact pad
P p contact pad

Aluminium
Resist
n+

Cell area = 1 cm?
p_

Intermediate _—"
layer

Glass/

School of Photovoltaic and Renewable Energy Engineering




10. Intermediate Layer

= Wetting layer

= Dopant source

= Contamination barrier

= Stable > 1414C

» Transparent anti-reflection coating (ARC)
= Passivation layer
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11. Materials of Interest

= SiC,
= SiN,
= SiO,

= Layers deposited by RF sputtering or PECVD
= 10-200 nm thick

= Either alone or in stacks
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Intermediate Layer

= Wetting layer

Intermediate _—"
layer
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12. Wetting and crystallisation

= Laser energy Int. layer | Process range

Too low Too high
(nc regions) (dewetting)

% YR RCR
) v »”

Just right

0

“I“ et

| 1000pm [
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13. Wetting and crystallisation

= Laser energy Int. layer | Process range
None 13 J/cm?

SIO,, 194 J/cm?2
SIiN 220 J/cm?2
Si0O, /SiC, stack 246 J/cm?

 SiN, layers result in pinholes in Si at
high laser energies

Transmission micrograph —> YIS
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Intermediate Layer

= Dopant source

Intermediate _—"
layer
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14. Dopant source

undppedlg-Si ——

B-doped .
Intermediate layer /
Si0,/SiN,/SiO, stack

Glass
5x5 cm?
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15. Dopant source

= Uniform region created during molten phase

= p+ region at interface?

1.E+20
1.E+19
~~
O 1E+18
T
S,
5 LE+17
5
S 1E+16
[a'a]
1.E+15

—380nm SiOx lowly doped
Si marker (arbitrary units)

IL/Glass

Silicon

7 8
Depth (pm)
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16. Dopant source

= Spreading resistance shows no p+
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Intermediate Layer

= Contamination barrier

Intermediate _—"
layer
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17. Contamination Barrier

= Problem is blocking B from glass!
= SiO, best barrier
= (Can use SiO,/SiC, or SiO,/SiN, stacks

1000.0
.
/)]
£ 100.0 0
a
% $

[ ]
d
Y 10.0 L
-
c
S
+ $
Q 1.0 s
% |
o s
0.1 | | | | | | |

No IL 1(0)% SiOx SiOx SiNXx SiCx SiCx
(10nm) (80nm) (200nm) (80nm) (14nm) (140nm)

School of Photovoltaic and Renewable Energy Engineering




18. Contamination Barrier

* Iron can also diffuse from glass

* [ron found at silicon grain boundary when no IL used

 No iron when SiOx IL used
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Intermediate Layer

= Stable > 1414C

Intermediate _—"
layer
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19. Stability

« Thick SiC, or SiN, layers cause wrinkling at the glass
surface

« Visible in reflection micrographs at IL interface viewed
through the glass

80nm SiN,
140nm SIC,

80nm SiO,
- | 14nm SIC,
IUDULHTI NO IL

=
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20. Stability

Nitrogen from SiN, layer diffuses into Si during crystallisation
N conc in Si when SiC, and SiO, used likely from atmosphere
No excess C from SiC, or O from SiO,
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Intermediate Layer

* Transparent anti-reflection coating (ARC)
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21. Transparent ARC

A

* |deally,n =24,d ==&

4n

and no absorption
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22. Transparent ARC

A

* |deally,n =24,d ==&

4n

and no absorption

80

(o))
o

Absorption (%)
D
(]

SiCx (47 nm, n=2.9)
—SiCx (14 nm, n=2.9)
—SiNx (80 nm, n=2.1)
—SiOx (70 nm, n=1.5)
—BSG (n=1.5)
= =-SiNx (50 nm reactively sputtered , n=2.0)
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Intermediate Layer

= Passivation layer

Intermediate _—"
layer
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23. Passivation Layer

= Single- and double-layer stacks

Silicon A
IL —
Glass —

80nm SiO, (n = 1.5) 20 nm SiC, (_n=2.9) 70 nm SiN, (_n=2.1)
80nm SiO, 80nm SiO,
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24. Passivation Layer

= Poor front
surface for SiO,/SiC,

(0]

300 500 700 900 1100
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25. Passivation Layer

= triple-layer stacks

15 nm SiO, 15 nm SiO,
20 nm SIC, 70 nm SIN,
80nm SiO, 80nm SiO,
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26. Passivation Layer

= Surface SiOx
improves IQE

=  ONO still not
ideal

(0]
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26. Passivation Layer

= Surface SiOx
improves IQE

=  ONO still not
ideal 0.6

QE

= Optimised ONO (4
(with reactive
sputtering) better

Sio, —
OCO —
ONO —
Optimised ONO ——

School of Photovoltaic and Renewable Energy Engineering

500 700 900
Wavelength [nm]




26. Passivation Layer

0.8
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— Stability
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27. Stability
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27. Stability
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28. Stability
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28. Stability

12 :II L T T T 1T T 1T T 11 | L IIII:
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= Best stabilised efficiency = 10.4%
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29. Selective p+ (Chaho Ahn)

= Degradation likely due to

poor contact with lightly-doped
absorber

p- 10e16 cm3
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29. Selective p+ (Chaho Ahn)

= Degradation likely due to
poor contact with lightly-doped
absorber

= Solution: selective p+ under
absorber contact

p- 10e16 cm3
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30. Selective p+ (Chaho Ahn)

Cell

Baseline
(initial)
Baseline
(delayed)

Selective p+
(initial)
Selective p+
delayed

= Data for cells with SiO, intermediate layer

School of Photovoltaic and Renewable Energy Engineering g UNSW



— Other current work
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31. Rear Texture (Zamir Pakhuruddin)
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32. Rear Texture (Zamir Pakhuruddin)

RMS = 78 nm

=
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33. Rear Texture (Zamir Pakhuruddin)
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33. Rear Texture (Zamir Pakhuruddin)

School of Photovoltaic and Renewable Energy Engineering




34- SI.II‘IS'VOC
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=  Significant Rg; ~ 500 Ohms.cm? and n = 2 influence
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35. Dark Lock-In Thermography

= DLIT shows hotspot at Si crack (shown for neighbouring cell)
= Same in forward and reverse bias

=  Ohmic shunt

74
VA

tI/ |f/

{ H

sl."
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36. Crack-free crystallisation (Jialiang Huang)

Standard process

|

«— 12 mm —

Scan
direction

“Crack-free” process

<+« 12 mm —»

School of Photovoltaic and Renewable Energy Engineering




37. Grain orientation control (Jae Sung Yun)

Standard 100 nm SiO,
Process Capping Layer

111

Position 1

100 - af—

F L =\
Position 2 L 4 A

Min

Position 3 y &, |

Inverse pole orientation map
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38. Laser diffusion (Miga Jung)

= RTP diffusion = |aser diffusion
% Expensive ® Cheap
&% Slow ® Fast
& Causes glass softening ® No effect on glass
&% Exacerbates cracks ® No effect on cracks

® Large process window ? @ Process window ?
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— Near-term priorities for future work
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39. Near-Term Priorities for Future Work

= Transfer processes to TETB

= Improve bulk passivation

= Improve surface passivation

= Identify and address device fabrication losses

— E.g. Cell isolation scribes u

= Investigate alternative junction formation

— Heterojunction
— Other?

= Plasmonic light-trapping?
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— Long-term priorities for future work
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40. Simple economics

. Multl wafer spot price = $0.84/wafer
@ eff = 17% > $0.20/W

¥ BSG ~ $20/m2 above standard glass
@ eff = 12% 24 F0.17/'W

* Need to Lnerease e
use standard glass
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41. Process sequence

= Typical TF-Si = |aser-crystallised TF-Si
. Clean
= (Clean *  Deposit
= Deposit L Cstallise
= Scribe . Diuse
=  Clean . = Need to
= Deposit : simplify contactin
= Scribe . scheme
= Deposit :
= Scribe

= Module assembly

Module Assembly
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42. Conclusions

= Laser-crystallised poly-Si solar cell reaching 11.7% efficiency

= Exceeds record for thin-film poly-Si

=  Short-term, recoverable degradation

12
= Selective p+ metallisation

11
makes stable cells

_ 10
=  Performance improvements

mostly due to
intermediate layer

= Many more opportunities
for further improvement
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