'EV101' and The Realities of Vehicle-Integrated PV: An EV Owner's Perspective

John Rodriguez

School of Photovoltaics and Renewable Energy Engineering, The University of New South Wales, Sydney, Australia

April 11, 2025

My Professional Background

- Bachelor of Engineering, Photovoltaic (PV) & Renewable Energy Engineering, UNSW
- Doctor of Philosophy, PV Engineering, UNSW
- Team Leader, Solar Energy Research Institute of Singapore, National University of Singapore
- Master of Business Administration, Quantic School of Business and Technology
- Group Manager, ACDC Research Group, UNSW (Current)

... So, why Electric Vehicles (EVs)?

So, Why EVs?...

- Battery technology developments from EVs and energy storage complements intermittency of PV and other renewables
- Content Writer, Solar Choice News, 2014–2015
 - o 'UNSW adds **fast chargers**, **Tesla Model S** and BMW i3 to **EV** arsenal', Jun 2015: <u>link</u>
 - $\circ~$ '**Tesla** Energy launch shakes up the energy industry', May 2015: <u>link</u>
 - \circ 'Levelised cost of storage: A better way to compare **battery** value', May 2015: <u>link</u>
 - $\circ~$ 'Super-fast charging for new lithium-ion battery', Oct 2014: \underline{link}
 - $\circ~$ 'Cheaper and lighter **battery** design a win-win for storage', Sep 2014: \underline{link}
 - 'UNSW solar car sets new speed record', Aug 2014: <u>link</u>
 - $\circ~$ 'Sunpower and KB Homes partnership offers PV with battery storage', Jul 2014: \underline{link}
- I've owned an EV for 2 years, and it's been great!

Contents

- Part 1 EV101:
 - A Budget EV Case Study
 - \circ Cost and Fuel Efficiency Comparisons
 - EV Charging Cheat Sheet

• Part 2 – Force, Power, and Energy Calculations:

- $\circ~$ Estimating EV Energy Economy from First Principles
- $\circ~$ Should I put PV modules on my car?
- $\circ~$ Sunswift Case Study

Budget EV Case Study

[EV Case Study] 2015 Gen-1 Nissan LEAF

- LEAF: <u>Low-E</u>mission, <u>A</u>ffordable <u>F</u>amily car
- First released in Dec 2010!
 - $\circ~2011$ World Car of the Year
 - Formerly the highest selling EV worldwide^[1], with over 400,000 units sold before Tesla Models 3&Y
- 80 kW-107 hp electric motor, more than enough for freeway speeds
- Original lithium-ion battery, 24 kWh nominal capacity

 Currently at ~ 70% State of Health (SOH) with 17 kWh usable
 Inner city driving range of ~ 115 km, rises to ~ 140 km on highways
- Second-worst EV available in Aus^{*}, can now be purchased for \$5,000(!) and up, depending on odometer and battery SOH.

Range Anxiety is Overemphasised

- Highway range of ~ 140 km
- Locations driven to-and-back:
 - Mooney Mooney, 65 km N
 - o Katoomba, 110 km W
 - Wollongong, 80 km S
 - o Newcastle, 170 km N
 - o Canberra, 290 km SW!
 - What's next? Wagga? Melbourne?

Energy Economy, $\epsilon_{\scriptscriptstyle EV}$

- 1) Highway driving: 9.0 km/kWh*
- 2) Inner-city stop-start average: 6.5 ± 0.5 km/kWh*, compared to brand new Australian EVs:

Make & Base Model	WLTP^ Range [km]	Battery Size [kWh]	Energy Econ. [km/kWh]	Approx. Price [AU\$k]
Tesla Model 3	513	62.3	8.2	60
Tesla Model Y	455	62	7.3	61.2
Polestar 2	546 (skeptical)	69	7.9	68.5
BYD Seal	460	61	7.5	53
MG 4	350	51	6.9	35 (27 EoY sales)
BYD Atto 3	345	50	6.9	47.2
MG ZS EV	320	51	6.3	35

Source: Australian Electric Vehicle Association (AEVA), New BEV Fact Sheet, Mar 2025

* The energy economy values shown are calculated based on energy use from the LEAF battery and does not account for ~ 1–5% charging losses.

^ As per AEVA advice: "Worldwide Harmonized Light vehicles Test Procedure (WLTP) range is ~ 30% lower than overoptimistic 'NEDC' protocol but ~ 10% higher than US 'EPA'. WLTP standardised cycle: 57% urban routes, 25% peri-urban routes, 18% motorway routes."

Fuel Efficiency Comparisons

Petrol vehicles are assessed in terms of 'fuel efficiency', μ_{ICE} , in L per 100 km:

$$\mu_{ICE} = \frac{100 \cdot V_f}{d}$$

The running cost of a petrol car, C_{ICE} , in \$ per 100 km is:

EVs are assessed in terms of 'driving efficiency', μ_{EV} , kWh per 100 km:

$$\mu_{EV} = \frac{100 \cdot E}{d \cdot \gamma} = \frac{100}{\epsilon_{EV} \cdot \gamma}$$

The running cost of an EV, C_{EV} , in \$ per 100 km is:

Survey of Motor Vehicle Use (12-months-ended-30-june-2020), Australian Bureau of Statistics, Australia, ABS Website, accessed 17 June 2024.

Fuel Efficiency Comparisons on MG 'ZS' Platform

Petrol vehicles are assessed in terms of 'fuel efficiency', μ_{ICE} , in L per 100 km:

$$\mu_{ICE} = \frac{100 \cdot V_f}{d}$$

The running cost of a petrol car, C_{ICE} , in \$ per 100 km is:

EVs are assessed in terms of 'driving efficiency', μ_{EV} , kWh per 100 km:

$$\mu_{EV} = \frac{100 \cdot E}{d \cdot \gamma} = \frac{100}{\epsilon_{EV} \cdot \gamma}$$

The running cost of an EV, C_{EV} , in \$ per 100 km is:

 $\circ p_{elec}$ = Price of electricity (\$/kWh), 23 c/kWh off-peak on carbon-neutral Powershop plan at time of writing

Fuel Efficiency Comparisons

EVs are assessed in terms of 'driving efficiency', μ_{EV} , kWh per 100 km:

The running cost of an EV, C_{EV} , in \$ per 100 km is:

 $C_{EV} = p_{elec} \cdot \mu_{EV}$

→ \$2.9–3.8 per 100 km

Where:

- \circ *E* = Energy consumed from EV battery (kWh)
- d = Distance driven (km)
- \circ γ = Charging efficiency of \sim 0.95 at 240V AC and \sim 0.99 at > 400V DC
- $\circ~\epsilon_{\rm EV}$ = 'Energy economy' (km/kWh), 6.3–8.2 km/kWh
- $\circ p_{elec}$ = Price of electricity (\$/kWh), 23 c/kWh off-peak on carbon-neutral Powershop plan at time of writing

What about rooftop solar energy?!?

 p_{elec} from rooftop solar in Sydney is ~ 5–10 c/kWh (depending on financing), meaning C_{EV} can be < \$1 per 100 km!!!

EV Charging

EVX

My Typical Charging Stats

[Key Point 1] You can treat your EV like your mobile phone or laptop: plug in when you get home and take it with you when you leave. You'll rarely need to visit a petrol station!

[Key Point 2] Most consumers with a parking spot and 240V outlet don't need a fast charger!

• The LEAF is charged mostly overnight at home with a 240V charger (~ 80–90%)

• Consider the range an overnight charge can provide, d_c , compared to the ~ 30 km daily driving average*:

$$d_c = P_c \cdot t_c \cdot \gamma \cdot \epsilon_{EV} = 100 \cdot P_c \cdot t_c \cdot \gamma/\mu_{EV}$$

Where:

- *P*_c = Power supplied by the charger (1.8 kW at 7.5 A);
- *t*_c = Charging time (hr, assumed 7pm to 7am);
- γ = Charging efficiency of ~ 0.95 at 240V AC;
- $\epsilon_{\rm EV}$ = 6.3–8.2 km/kWh ($\epsilon_{\rm EV}$ = 100/ $\mu_{\rm EV}$); and
- $d_{\rm c} = 129 168$ km.
- The much smaller remaining portion is split evenly between 'Type 2' AC charging while running errands and 'Type 3' DC charging on longer journeys.

EV Charging Categories

	Power	Voltage	Current	Phase	Price	Plug Types	Free Charging?
	kW	V	Α	#	c/kWh		
Type 1 (T1): overnight charger	1.8–3.6, AC	240	≤ 15	1	5*–25 off peak	BYO 3-pin 240V-to-T2 or 240V-to-T1	
Туре 2 (Т2)	3.6–22, AC	240	≤ 32	1, 3	25–50	Mostly BYO, T2-to-T2 or T2-to-T1	Yes, see 'PlugShare' app: shopping centres, carparks, RSLs, community centres, etc.
Type 3 (T3): fast charger	20–150+, DC	400, 800, 1k	> 100	n/a	Up to 70	T2 CCS, Tesla, Chademo	Yes, refer to 'Jolt' app.

EV Charging Cheat Sheet

Forces and Work

Forces at Rest

• Weight, F_W [N]

Forces at Constant Velocity

- Weight, F_W [N]
- Thrust, F_{T_bal} (if = $F_D + F_R$)
- Drag, F_D
- Rolling Friction, F_R
- Lift, F_L (negligible, $\langle F_W$)

Forces During Acceleration

- Weight, F_W [N]
- Thrust, F_T (if > F_D + F_R)
- Drag, F_D
- Rolling Friction, F_R

Forces Opposing Motion

• Drag, F_D [N]:

$$F_D = \frac{1}{2} \cdot \rho \cdot A \cdot C_D \cdot (v - v_{wind})^2$$

Where:

- $\circ \rho$ is the density of air [assume 1.2 kg·m³]
- \circ *A* is the cross-sectional area of the car perpendicular to motion [m²]
- \circ *C*_D is the drag coefficient [Gen-1 Nissan LEAF = 0.28]
- v_{wind} is the wind velocity [assume 0 m·s⁻¹]
- \circ F_L , follows the same format with C_D replaced with the lift coefficient, C_L
- Rolling Friction, F_R [N]:

$$F_R = \mu_R \cdot m \cdot g$$

Where:

- $\circ \mu_R$ is the coefficient of rolling friction [assume 0.01]^[3]
- *m* is the mass of the car [kg]
- $\circ g$ is the acceleration due to gravity [assume 9.8 m·s⁻²]

[3] Assumption is for an ordinary car driving on concrete and asphalt. More <u>sophisticated approximations of CRF</u> that consider v and tyre pressure can be used.

Energy Use Calculations

- Distance travelled by the car ('displacement'), *x* [m], in time, *t* [s]
- Velocity, $v [m \cdot s^{-1}]$:
- For constant acceleration, $a \text{ [m} \cdot \text{s}^{-2} \text{]}$:
- Work done by a force, *E_w* [J, N·m]:
 For constant *F*:
 For *F(x)*:

$$v = \frac{dx}{dt} \leftrightarrow dx = v \cdot dt$$

$$E_{w} = F \cdot x$$
$$dE_{w} = F \cdot dx$$
$$E_{w} = \int F \cdot dx$$

 $v = v_0 + a \cdot t$

• Power, P [W, N·m·s⁻¹]:

Energy Use Calculations – Losses

• Mechanical: LEAF 'EM57' Power Train Efficiency^[4], η_{mech}

○ U.S. Department of Energy: EVs convert on average 87–91% of input energy to energy at the wheels^[5].

• Electrical^[5]: losses due to EV 'accessories and auxiliary electrical' (no AC) are small and in the range of ~ 2 %, with corresponding factor $\eta_{elec} = 0.98$.

Forces Opposing Motion

For given *v*:

$$F_{T_bal} = F_D + F_R$$

= $\frac{1}{2} \cdot \rho \cdot A \cdot C_D \cdot v^2 + \mu_R \cdot m \cdot g$

Where:

- $\circ \rho$ = 1.2 kg·m³
- $\circ A_{LEAF} = 2.385 \text{ m}^2$
- $\circ C_D = 0.28$
- $\circ \mu_R = 0.01$
- \circ *m* = 1581 kg (curb weight and 1 passenger)
- $\circ g = 9.8 \text{ m} \cdot \text{s}^{-2}$
- $\circ \ \eta_{mech}(v)$ and η_{elec} (0.98) overlaid to visualise the effect of losses

Nissan LEAF Power Draw

For given *v*:

$$P_{T_bal} = F_{T_bal} \cdot v$$

$$= \left(\frac{1}{2} \cdot \rho \cdot A \cdot C_D \cdot v^2 + \mu_R \cdot m \cdot g\right) \cdot v$$

Where:

- $\rho = 1.2 \text{ kg} \cdot \text{m}^3$ • $A_{LEAF} = 2.385 \text{ m}^2$ • $C_D = 0.28$ • $\mu_R = 0.01$ • m = 1581 kg (curb weight and 1 passenger) • $g = 9.8 \text{ m} \cdot \text{s}^{-2}$
- $\circ~\eta_{\it mech}(v)$ and $\eta_{\it elec}$ (0.98) losses overlaid

$[\epsilon_{EV}$ Scenario 1] Highway Cruising

• Simplifying assumptions:

- $\circ~43.3~\text{km}$ journey to UNSW, with minimal change in elevation
- $\circ\,$ Toll roads and highways for vast majority journey i.e., no stops along the way
- $\circ~$ Drove at approx. average speed of 85 $km \cdot h^{-1}$
- $\circ~$ The work needed to accelerate the car from rest to cruising speed (0.14 kWh) is small compared to total energy use
- The impact of regenerative braking is small: (i) the LEAF's generator is capped to 30 kW; and (ii) braking is 'rapid' such that vehicle kinetic energy is lost as heat.

 $[\epsilon_{EV}$ Scenario 1] Highway Cruising

 $E_{battery} = E_w / \eta_{losses}$

$$\approx \frac{F_{T_bal}(v=85) \cdot x}{\eta_{mech}(v=85) \cdot \eta_{elec}}$$

 $= 17.697 MJ \leftrightarrow 4.916 kWh (3 d. p.) [1 kWh = 3.6 MJ]$

$$\in_{highway} = \frac{x}{E_{battery}} = \frac{43.3 \ km}{4.916 \ kWh}$$

 $= 8.8 \ km \cdot kWh^{-1}$

$[\epsilon_{EV}$ Scenario 2] Inner City Stop-Start

• My Drive to Work:

60

- $\circ~$ 4.8 km journey to UNSW, with minimal change in elevation
- $\,\circ\,$ Eight stops along the way: stop signs, roundabouts, traffic lights, on average every 600 m
- $\circ~$ Steady speed of 50 km·h^-1 after constant acceleration of 10 km·h^-1 ·s^-1 $\,$

60

• The impact of regenerative braking is small (refer to Slide 19)

$$E_{w} = \int_{0}^{x_{1}} F_{a} \cdot dx + \int_{0}^{x_{1}} (F_{D}(v) + F_{R}) \cdot dx + \int_{x_{1}}^{x_{2}} (F_{D}(v = 50) + F_{R}) \cdot dx$$

[ϵ_{EV} Scenario 2] Inner City Stop-Start

$$\begin{split} E_w &= \int_0^{x_1} F_a \cdot dx + \int_0^{x_1} (F_D(v) + F_R) \cdot dx + \int_{x_1}^{x_2} (F_D(v = 50) + F_R) \cdot dx \\ &= (m \cdot a) \cdot x_1 + \int_0^{x_1} (\frac{1}{2} \cdot \rho \cdot A \cdot C_D \cdot v^2 + \mu_R \cdot m \cdot g) \cdot dx + F_{T_bal}(v = 50) \cdot (x_2 - x_1) \\ &= 152,488 J + \int_0^{x_1} (\frac{1}{2} \cdot \rho \cdot A \cdot C_D \cdot v^2 + \mu_R \cdot m \cdot g) \cdot dx + 145,178 J \end{split}$$

$$\int_{0}^{x_{1}} \left(\frac{1}{2} \cdot \rho \cdot A \cdot C_{D} \cdot v^{2} + \mu_{R} \cdot m \cdot g\right) \cdot dx = \int_{0}^{t_{1}=5} \left(\frac{1}{2} \cdot \rho \cdot A \cdot C_{D} \cdot v^{2} + \mu_{R} \cdot m \cdot g\right) \cdot (v \cdot dt)$$
$$= \int_{0}^{t_{1}=5} \left(\frac{1}{2} \cdot \rho \cdot A \cdot C_{D} \cdot (a \cdot t)^{3} + \mu_{R} \cdot m \cdot g (a \cdot t)\right) \cdot dt$$
$$= \left[\frac{\rho \cdot A \cdot C_{D} \cdot a^{3} \cdot t^{4}}{8} + \frac{\mu_{R} \cdot m \cdot g \cdot a \cdot t^{2}}{2}\right]_{0}^{5}$$
$$= 6,722 J$$

$$E_{battery} \approx \frac{(m \cdot a) \cdot x_1 + \int_0^{x_1} (F_D(v) + F_R) \cdot dx}{\eta_{mech_{ave}} * \cdot \eta_{elec}} + \frac{\int_{x_1}^{x_2} (F_D(v = 50) + F_R) \cdot dx}{\eta_{mech}(v = 50) \cdot \eta_{elec}} = 0.0965 \, kWh \, (4 \, d. \, p.)$$

$$\therefore \in_{city} = \frac{0.6 \, km}{0.0965 \, kWh} = 6.2 \, km \cdot kWh^{-1}$$

SW

* The average power train efficiency between 0 and 50 km/h is used (0.87).

'Physics For Scientists and Engineers with Modern Physics', 5th Ed, Serway & Beichner. For constant $a_{,x_{b}-x_{a}} = (v_{b}+v_{a})\cdot t/2$

Can I Run My Car With Solar Panels?

LEAF PV Sizing

- As an upper limit, consider module record efficiencies for non-concentrator modules^[6]:
 - Silicon (dominant technology, relatively low cost): 24.9%, Maxeon, 2024
 - III-V (very \$\$\$): 32.65%, Sharp, 2022
 - $\circ~$ For comparison, Sunswift 7 modules: ~ 22% silicon modules from Sunpower, 4.8 m^2

• Assume **ideal** conditions:

- $\circ~$ Standard test conditions (STC) of 1,000 W·m^{-2} irradiance, G, at 25 °C
- \circ No shading from clouds or surrounding structures
- Perfectly flat horizontal surfaces to mount the PV modules
- Available horizontal space on LEAF: 2.3 m²
 - Roof: 1.7 m × 0.9 m
 - \circ Hood: 0.9 m × 0.9 m
- Two scenarios:
 - A. Power EV with PV modules only, no energy from the battery
 - B. Use PV plus the battery to store energy for use later *

[6] Green MA, et al. 'Solar cell efficiency tables (Version 64)'. Prog Photovolt Res Appl. 2024; 32(7): 425-441. doi:10.1002/pip.3831

* I'll leave this for you to figure out. Consider an average of ~ 4–5 Peak Sun Hours, PSH, for a horizontal surface in Sydney (equivalent to 4–5 hours in STC).

100% Solar Powered LEAF?

PV power generation, P_{PV} :

$$P_{PV} = A_{PV} \cdot G_{STC} \cdot \eta_{PV}$$

\$\approx 600-800 W\$

Where:

- A_{PV} = 2.3 m² ○ G_{STC} = 1000 W·m⁻²
- \circ η_{PV} = 24.9–32.65% for record modules

[NOTE] For non-ideal conditions (shading, PV on curved surfaces, vertical mounting on side/rear), G will decrease on average and reduce P_{PV} further:

 $P_{PV} \propto G$

 $v_{max} \sim 10-15 \text{ km} \cdot \text{h}^{-1}$

But What About Sunswift?

[Image Credit]: UNSW Sydney

[Sunswift] How Do They Do It?

 $E_w \approx F_T \cdot x$

$$F_{T_bal} = F_D + F_R$$

= $\frac{1}{2} \cdot \rho \cdot A \cdot C_D \cdot v^2 + \mu_R \cdot m \cdot g$

Where:

 $\circ \rho = 1.2 \text{ kg} \cdot \text{m}^3$ $\circ g = 9.8 \text{ m} \cdot \text{s}^{-2}$

	LEAF	Sunswift
<i>A</i> [m ²]	2.385	~ 2.1
C _D	0.28	0.095
μ_R	0.01	0.004
m _{curb} [kg]	1481	500
ϵ [km·kWh ⁻¹]	6.5	≳ 20-30

[Sunswift] How Do They Do It?

 $P_{PV} = A_{PV} \cdot G_{STC} \cdot \eta_{PV_STC}$ $\approx 1 \ kW$

Where:

$$◦ A_{PV} = 4.8 \text{ m}^2$$

 $◦ G_{STC} = 1000 \text{ W} \cdot \text{m}^{-2}$

 $◦ η_{PV_STC} = 22\% *$

	LEAF	Sunswift
A_{EV} [m ²]	2.385	~ 2.1
C _D	0.28	0.095
μ_R	0.01	0.004
m _{curb} [kg]	1481	500
ϵ [km·kWh ⁻¹]	6.5	≳ 20-30
A_{PV} [m ²]	2.4	4.8

Let's Recap

Summary

- EVs are now very affordable, especially when bought second-hand
- Average EV running costs are ~ 70–80% less per 100 km than ICE vehicles when charged at home, and still significantly cheaper when using public fast chargers
- The now-standard 300+ km range of new EVs is PLENTY for the average driver
- What's next for the LEAF?
 - $\circ~$ Continue saving up to \$2k–4k p.a. on fuel costs;
 - $\circ~$ Keep driving it until the battery SOH drops to an impractical range; after which
 - o There are battery pack replacement options available to keep it on the road for (hopefully) decades more; and
 - $\circ~$ Options to repurpose or recycle the old battery pack.

Thank you!

John Rodriguez john.rodriguez@unsw.edu.au

Australian Government Australian Renewable **Energy Agency**

