

Developments in Photoluminescence Characterisation for Silicon PV

Bernhard Mitchell¹, Thorsten Trupke^{1,2}, Jürgen W. Weber², Johannes Greulich³, Matthias Juhl¹, Martin A. Green¹, Daniel Walter⁴, Daniel Macdonald⁴

- ¹ University of New South Wales, Sydney, Australia
- ² BT Imaging Pty Ltd, Sydney, Australia
- ³ Fraunhofer Institute for Solar Energy Systems (ISE), Freiburg, Germany
- ⁴ College of Engineering and Computer Science, The Australian National University, Canberra, Australia

Imaging internal properties of humans!

Imaging internal properties of silicon!

TEM \rightarrow lattice structure

Imaging material/device properties limited to DLIT, CDI/ILM Scanning with EBIC/XBIC, MDP/µPCD, QSSPC, LBIC

PL imaging visualises minority carrier properties!

Optical image

PL image

Outline:

- Spectral imaging on silicon bricks
 - ✓ Proof of concept
 - ✓ Overcoming experimental limitations
 - ✓ Quantifying physical limitations

- Inline inspection and sorting
- Characterisation of next generation cell structures

Why brick imaging?

- Bulk lifetime sufficient?
- Doping range?
- Dislocation density?
- Fe contamination?
- Where to cut off? Where dead?
- Which parts suitable for high efficiency devices?
- What efficiency to expect?
- What cost/profit to expect?

Challenges: Bulk but bare!

Proof of concept study

JOURNAL OF APPLIED PHYSICS 109, 083111 (2011)

Bulk minority carrier lifetimes and doping of silicon bricks from photoluminescence intensity ratios

Bernhard Mitchell,^{1,a)} Thorsten Trupke,^{1,2} Jürgen W. Weber,² and Jørgen Nyhus³ ¹School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia ²BT Imaging, Surry Hills, NSW 2010, Australia ³REC Wafer, Norway AS, 3908 Porsgrunn, Norway

PLIR: from qualitative to quantitative images

Modelling spectral PL response of brick

Assumptions: 1D model, bare surfaces, infinite depth, monochromatic excitation, thin surface damage layer (after polish), non-injection dependent bulk lifetimes

Includes: Temperature dependence (absorption coefficient, mobility), Free carrier absorption, SRV dependence, Excitation and filter selection

Spectral composition of luminescence

*M. A. Green, Appl. Phys. Lett. 99, 131112 (2011)

$$PL(\tau_b)|_{S\to\infty} \propto \int_{\lambda_0}^{\lambda} r_{sp}(\lambda) \frac{\alpha_{bb}(\lambda_{laser})L^2(\tau_b)}{[\alpha_{tot}(\lambda_{laser}) + \alpha_{tot}(\lambda)][1 + \alpha_{tot}(\lambda_{laser})L(\tau_b)][1 + \alpha_{tot}(\lambda)L(\tau_b)]} \Theta(\lambda) d\lambda$$

Spectral composition of luminescence

PL spectral intensity ratio

Proof of concept images

Overcoming experimental limitations

JOURNAL OF APPLIED PHYSICS 112, 063116 (2012)

On the method of photoluminescence spectral intensity ratio imaging of silicon bricks: Advances and limitations

Bernhard Mitchell,^{1,a)} Jürgen W. Weber,² Daniel Walter,³ Daniel Macdonald,³ and Thorsten Trupke^{1,2} ¹School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia ²BT Imaging, 1 Blackburn St, Surry Hills, NSW 2010, Australia ³Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 0200, Australia

Optical light spread in detection CCD: Masking experiment

17

Optical light spread of localised illumination

SP filtered

LP filtered

Measurement of Point Spread Functions (PSF)

Deconvolution of single images

SP filtered

LP filtered

Improved bulk lifetime image

Deconvoluted:

Bottom and top data strongly improved

Light spreading effects wafer measurements!

D. Walter, A. Liu, E. Franklin, D. Macdonald, B. Mitchell, and T. Trupke, in IEEE 38th Photovoltaic Specialists Conference, Austin, TX, 3–8 June 2012

Example: Estimate of efficiency potential of mc-Si wafers

B. Michl, M. Rüdiger, J. A. Giesecke, M. Hermle, W. Warta, and M. C. Schubert, "Efficiency limiting bulk recombination in multicrystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 98, pp. 441-447, Mar. 2012.

Low blur images crucial for quantitative evaluation of PL data!

Alternative InGaAs detected PLIR?

Alternative InGaAs detected PLIR?

What have we learned more?

Quantifying physical limitations

Solar Energy Materials & Solar Cells 107 (2012) 75-80

Quantifying the effect of minority carrier diffusion and free carrier absorption on photoluminescence bulk lifetime imaging of silicon bricks

Bernhard Mitchell^{a,*}, Johannes Greulich^b, Thorsten Trupke^{a,c}

^a School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia

^b Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany

^c BT Imaging, 1 Blackburn St, Surry Hills, NSW 2010, Australia

Image contrast and minority carrier diffusion

SP 1025 nm filtered

LP 1050 nm filtered

Study: Grain / Grain boundary interface

Measured bulk lifetime contrast at GB [µs]

Electrical simulation: 2D excess carrier densities

Lateral effect of diffusion on PLIR detected bulk lifetime

Effect of free carrier absorption

Outlook brick characterisation

- Impurity analyses on brick level
- Full spectrum analyses
- Efficiency predictions?
- Inline measurements

Inline inspection and sorting of as-cut wafers

As cut wafer vary vastly in impurity and dislocation concentration!

Inspection and classification at inline speed now possible!

Dislocation Defect Classification: mc-Si & cast mono

PL Image

Processed Image

Correlation between defect metrics and cell performance

37³⁷

- Strong correlation of IV data with PL defect metric!
- No lifetime data used for correlation!

W. McMillan, T. Trupke, J. Weber, M. Wagner, U. Mareck, Y.C. Chou, and J. Wong, "In-line monitoring of electrical wafer quality using photoluminescence imaging," *Proceedings of 25th EPVSC, Valencia, Spain, September*, 2010.

Defect band imaging

[22] F. Yan et al., "Defect-band photoluminescence imaging on multicrystalline silicon wafers," *physica status solidi (RRL) - Rapid Research Letters*, vol. 6, no. 5, pp. 190-192, May 2012.

Impurity Signatures

Ingot Edge

Transition

Ingot Corner

Fully Impure (top/bottom)

Impurity Signatures

Characterisation of Advanced Cell Concepts with Sub-Micron Resolution

Micro PL spectroscopy

Gundel et al. Nanoscale Research Letters 2011, 6:197

Nickel plated front contacts

Shockley-Read-Hall lifetime (µs)

Contact was tempered at 500C for 10 min

Paul Gundel et al. / Energy Procedia 8 (2011) 250-256

Laser doped back surface field

Doping density (10¹⁹ cm⁻³)

Paul Gundel et al. / Energy Procedia 8 (2011) 250-256

Conclusions & Outlook

- PL Imaging with increasing number of quantitative applications
- Quantitative brick imaging could become a valuable early stage characterisation and prediction tool
- Qualitative images contain more than just effective lifetime imaging (as-cut sorting, gettering efficiency, efficiency prediction)
- Microscopic PL candidate for research application (local doping structures, local recombination activity, defects)
- PL keeps playing a strong role as an ideal characterisation tool for solar cell materials and devices

