

Anodic Aluminium Oxide for Passivation in Silicon Solar Cells

Never Stand Still

Faculty of Engineering

School of Photovoltaic & Renewable Energy Engineering

Zhong Lu

Supervisor: Alison Lennon

Co-supervisor: Stuart Wenham

May. 2015

Outline

- Introduction to the Research Topic
 - Objective and research area
- Manipulation of stored charge in AAO
 - Self-patterned localized metal contacts for silicon solar (motivation)
 - Manipulation of stored charge in AAO dielectric stacks
 - Investigation of stored charge distribution and stability
 - Impact of annealing
- Passivation from AAO
 - Passivation of AAO dielectric stacks on p⁺ and n⁺ surfaces
 - Improving the Passivation on p+ Surfaces by Charge Management
 - Demonstration of Bulk Passivation by Annealing AAO Stacks
- Summary

Introduction

• Objective of the Project:

To integrate the anodic aluminium oxide (AAO) into cells designs to achieve localized rear contact, enhanced passivation.

- Research Areas:
 - Localized contact using AAO as self-patterning template
 - Manipulation of the stored charge in AAO
 - Investigation on the mechanism about charge manipulation
 - Using AAO to passivate silicon surface with different doping

Outline

- Introduction to the Research Topic
 - Objective and research area
- Manipulation of stored charge in AAO
 - Self-patterned localized metal contacts for silicon solar (motivation)
 - Manipulation of stored charge in AAO dielectric stacks
 - Investigation of stored charge distribution and stability
 - Impact of annealing
- Passivation from AAO
 - Passivation of AAO dielectric stacks on p⁺ and n⁺ surfaces
 - Improving the Passivation on p+ Surfaces by Charge Management
 - Demonstration of Bulk Passivation by Annealing AAO Stacks
- Summary

- Motivations
- There are two important aspects about surface passivation:
 (1) chemical passivation; and (2) field effect passivation.
- Chemical Passivation is to deactivate surface defects
- Field-effect passivation mainly affected by $Q_{eff.}$

Fig. 2. Preferable dielectric stored charge polarity for (a) p⁺ surface; (b) n⁺ surface and (c) interdigitated n-p surface

[2] S. Dauwe, L. Mittelstädt, A. Metz, and R. Hezel, P.I.P., 10, pp. 271-278, (2002)

Motivation

Manipulate the stored charge polarity and density to avoid inversion layer that causes parasitic shunting [2].

[2] G. D. Wilk, R. M. Wallace, and J. M. Anthony, *J. of Applied Physics,* **89**, 5243-5275, (2001)

Motivation

Simulated Voc for localized contact. Different curves correspond to different LBSF thickness

I. of Applied Physics,

• Methods

Use pulse anodization where the metal experiences both positive and negative cycles. The stored charge is manipulated by tunning f_p

Effects of positive pulse percentage on Q_{eff}

and polarity in AAOfor silicon solar cell passivation," the 5th silicon PV, Konstanz, 2015

- Distribution of Q_{eff} in the SiO₂/AAO stack
- Etching-off methods

- Deposit a step profile

$$V_{FB} = \phi_{MS} - \frac{1}{c_{tot}} (Q_{SiO2} + Q_{AAO} \frac{t_{effAAO}}{t_{eff}} + \int_{0}^{t_{effAAO}} \frac{\rho(x) \cdot x}{t_{eff}} dx)$$

• Distribution of Q_{eff} in the SiO₂/AAO stack

$$V_{FB} = \phi_{MS} - \frac{1}{\varepsilon_{Si}} (Q_{SiO2} \cdot t_{eff} + Q_{AAO} \cdot t_{eff_{AAO}} + \frac{\rho \cdot t_{eff_{AAO}}^2}{2})_{\text{(under review)}}^{\text{tored charge in AAO/SiO_2}}$$

• Distribution of Q_{eff} in the SiO₂/AAO stack

• Stability of Q_{eff} in the SiO₂/AAO stack

Fig. 4 (a) stability of the negative Q_{eff} over time for test structures fabricated at different f_p ; (b) stability of the positive Q_{eff} over time for test structures (all at $f_p = 100\%$) with different AAO thicknesses

Impact of annealing

Positive Charge

- Two groups: annealed with or without aluminium capping:
- Annealing at 400 °C for 30 min in:

Negative Charge

Fig 5. C-V curves of SiO_2 /AAO annealed in three different gases with and without the AI capping on AAO

[5] **Z. Lu,** Z. Ouyang, Y. Wan, N. Grant, D. Yan and A. Lennon. "Manipulation of stored charge in AAO/SiO₂ dielectric stacks by the use of pulse anodization", *Applied Surface Science*, 2015 (under review)

- Impact of annealing
- Two groups: annealed with or without aluminium capping:
- Annealing at 400 °C for 30 min in:

ΑΛΟ
SiO ₂
Textured/Polished Si

Fig 5. Midgap Dit of SiO_2 /AAO annealed in three different gases with and without the AI capping on AAO

[5] **Z. Lu**, Z. Ouyang, Y. Wan, N. Grant, D. Yan and A. Lennon. "Manipulation of stored charge in AAO/SiO₂ dielectric stacks by the use of pulse anodization", *Applied Surface Science*, 2015 (under review)

- Impact of annealing
- Annealing in N₂/O₂ mixed atmosphere is most effective in reducing positive charge.
- Why?
- A research about origins of stored charge in AlOx suggest that Al DBs in the bulk AlOx stores positive charge
- Oxygen deficiency contributes to AI DBs. Since AI DBs is above the Fermi level, they are positively charged

[6] B. Shin, J. R. et. Al., "Origin and passivation of fixed charge in atomic layer deposited aluminum oxide gate insulators on chemically treated InGaAs substrates," *APL*, vol. 96. 2010.

- Impact of annealing
- Annealing in N₂/O₂ mixed atmosphere is most effective in reducing positive charge.
- Why?
- N₂/O₂ annealing supplies extra oxygen, reducing O deficiencies thus reducing the positive bulk charge

Fig 6. Depth profiles of the ratio of O 1s to Al 2p

measured from XPS for SiO₂/AAO test structures before and after annealing in N_2/O_2

Outline

- Introduction to the Research Topic
 - Objective and research area
- Manipulation of stored charge in AAO
 - Self-patterned localized metal contacts for silicon solar (motivation)
 - Manipulation of stored charge in AAO dielectric stacks
 - Investigation of stored charge distribution and stability
 - Impact of annealing
- Passivation from AAO
 - Passivation of AAO dielectric stacks on p⁺ and n⁺ surfaces
 - Improving the Passivation on p+ Surfaces by Charge Management
 - Demonstration of Bulk Passivation by Annealing AAO Stacks
- Summary

- Significant improvement in Jo is demonstrated when AAO applied on P diffused surface.
- Lifetime enhanced over the entire injection level

- Surface recombination increased by AAO applied on B diffused surface.
- Lifetime enhanced at low injection level

Improving the Passivation on p+ Surfaces

• Passivation on p⁺ Surfaces with charge management

Fig. 7 *J*_o as a function of positive cycle percentage

Fig. 8 D_{it} and Q_{eff} as a function of positive cycle percentage

Demonstration of Hydrogen Passivation

Hydrogen passivation on oxygen precipitation ?

Figure 9. (a) PL images of Oxygen precipitation; (b) Hydrogen incorporation in AAO[P.H. Lu]

[7] B. Hallam, B. Tjahjono, T. Trupke, and S. Wenham, "Photoluminescence imaging for determining the spatially resolved implied open circuit voltage of silicon solar cells," *Journal of Applied Physics*, vol. 115, p. 044901, 2014.

[8] J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, "Minority carrier lifetime in silicon photovoltaics: The effect of oxygen precipitation," *Solar Energy Materials and Solar Cells*, vol. 120, Part A, pp. 402-411, (2014)

Demonstration of Hydrogen Passivation

Hydrogen passivation on oxvgen precipitation ?

Figure 10. PL images after (a) oxidation and diffusion; (b) anodization and annealing in N_2

[7] B. Hallam, B. Tjahjono, T. Trupke, and S. Wenham, "Photoluminescence imaging for determining the spatially resolved implied open circuit voltage of silicon solar cells," *Journal of Applied Physics*, vol. 115, p. 044901, 2014.

[8] J. D. Murphy, R. E. McGuire, K. Bothe, V. V. Voronkov, and R. J. Falster, "Minority carrier lifetime in silicon photovoltaics: The effect of oxygen precipitation," *Solar Energy Materials and Solar Cells*, vol. 120, Part A, pp. 402-411, (2014)

Summary

- Localized contacts achieved by self-pattern AAO are demonstrated in this work, but result in low device voltage.
- Stored charge manipulation in AAO was achieved using pulsed anodization, with Q_{eff} ranging from 2 × 10¹² to -5 × 10¹¹ q/cm²
- The Q_{eff} and D_{it} were found to be affected by annealing and it is suggested that O_2 annealing can reduce the bulk positive Q_{eff} while FG anneal is most effective in reducing D_{it} .
- AAO provides good passivation for phosphorus diffused Si surface, but results in higher SRV when applied on boron diffused Si surface
- Charge manipulation was demonstrated to enhance passivation on boron-diffused surfaces

Thank you!

