Materials by Design and Advances in Photovoltaic R&D

Bill Tumas

Associate Laboratory Director National Renewable Energy Lab

UNSW Seminar

July 8, 2016 bill.tumas@nrel.gov

Photovoltaics Summary

Rapid progress has been made in PV but we aren't done yet

- Solar energy can deliver low-carbon energy to mitigate Climate Change BUT further advances are needed for TWs
- •Grid parity < 2020
- •Systems approach (module, BOS/soft costs, reliability, grid integration)
- •Policy/markets; Utility models, Financing

Beyond Grid Parity with signficant further cost reductions (2-3¢/kW-hr)

- •Next-Gen technologies: new materials, concepts and processes for high efficiency, low cost, AND manufacturability
- •Novel processing technologies (low CAP-EX mfg)
- •Mitigate devaluation of solar at high penetration
- •Grid flexibility, energy mix, and low cost energy storage

Solar energy can also provide power to the underserved

- •Multi-scale approaches to energy systems
- •Distributed and dispatchable energy, microgrids, storage

- Since 2011, costs down 65% and 70% towards grid parity goals
- 8 reports DOE and 4 National Labs (NREL, Berkeley, Argonne, Sandia)
 - Lessons Learned; Challenges/Opportunities

PHOTOVOLTAIC EFFICIENCY, RELIABILITY, AND COSTS ADVANCING CONCENTRATING SOLAR POWER TECHNOLOGY

U.S. SOLAR MANUFACTURING

INTEGRATING HIGH LEVELS OF SOLAR INTO TRANSMISSION INTEGRATING HIGH LEVELS OF SOLAR INTO THE DISTRIBUTION SYSTEM FINANCING SOLAR UTILITY REGULATION AND BUSINESS MODEL FOR FINANCIAL IMPACTS

ENVIRONMENTAL AND PUBLIC HEALTH BENEFITS

On the Path SunShot

Sin

8 r

IN

FI

U⁻

1

ON THE PATH TO SUNSHOT: EXECUTIVE SUMMARY

U.S. Department of Energy

- Continued innovation in system-level S&T critical for grid parity and beyond
- Need to pursue multiple strategies to maintain the value (costs + benefits) of solar
- PF
 Increasing grid flexibility, next-gen power electronics and other strategies could enable 25% solar
 IN
 - Monetizing environmental benefits could add ~3.5¢/kWh to the value of solar energy

NREL Solar R&D: Materials, Cells, Modules, Systems

Energy Storage

NREL Solar R&D: Materials, Cells, Modules, Systems

Understand limitations and enhance performance in current systems

Accelerate emerging concepts

Develop next generation concepts and materials

Hydride Vapor Phase Epitaxy for GaAs

Now >23% GaAs homojunction cell (no cladding layers) :

- Dual chamber HVPE reactor for Ga, In, As, P alloys
 - full 3D computational fluid dynamics (CFD) modeling
- Produced epitaxial GaAs materials at growth rates exceeding 1.8 $\mu\text{m}/\text{min}$
- Can produce flat, parallel, low-defect homo- and hetero-interfaces
- Demonstrated very high metal utilization (~70% for Ga)

Development of World Record GalnP/Si Dual-Junction, One-Sun Solar Cell

1.8-eV GaInP top junction with a silicon bottom junction, with a fourterminal interconnection

- A two-junction structure with a silicon bottom junction
- New device structure combining a III-V GaInP top junction and a silicon bottom junction,
- Demonstrated a world record 29.8% efficiency significantly exceeding the best conventional silicon efficiency of 25.6%.
- Four-terminal structure allows ease of construction, and optimal energy production under real-world operating conditions.
- Developing an improved, manufacturable bonding

S. Essig et al., Energy Procedia 77, p. 464 (2015).

CdTe Technology

Cataloging the role of GBs, surfaces and bulk defects

Overcoming 20-year V_{oc} barriers

Histogram of V_{oc} values for about 2200 polycrystalline CdTe devices

- Worked w/o universal CdCl₂ treatment
- Switched to anion Group V doping
- Shifted to Cd-rich stoichiometry to Improve lifetime by removing Te_{Cd} antisites, and hole density by placing P on Te sites.

T. Barnes, W. Metzger et al. Burst et al Nature Energy, 2016

Solar Devaluation with Increasing Deployment

Mills, Wiser, LBNL, 2012

Denholm, NREL, 20126

Grid Modernization Lab Consortium

- Grid Modernization Laboratory Consortium involves 14 DOE national laboratories and industry, academia, and state and local government partner
- Energy Systems Integration Facility
- Multiple parallel AC and DC experimental busses (MW power level) with grid simulation
- "Hardware-in-the-loop" simulation capability to test grid scenarios with high penetration of renewables
- Peta-scale high-performance computing and data management system
- Virtual utility operations center and visualization rooms

NREL Energy Systems Integration Facility (ESIF) Research and Testing

Grid Modernization Lab Consortium

- Vehicles to Grid, Buildings
- Water purification/desalination
- Fuels, Chemicals
 - CO_2 reduction; $N_2 \rightarrow NH_3$; C

Conceptual H₂@Scale Energy System

*Illustrative example, not comprehensive

Solar Hydrogen Generation for Energy Storage

PV-Electrolysis

Photoelectrochemical Water Splitting

Novel cell uses light to produce H₂ at 12.4% efficiency Current 02 H_2 000 p-GalnP₂ GaAs p-GaAs Light Pt Tunnel diode Ohmic contact interconnect Photovoltaic cell Photoelectrochemical

Note: *n* and *p* refer to *n*- and *p*-type semiconductors **Credit:** Adapted with permission from Science, copyright 1996 AAAS

K. Harrison et al.

J. Turner et al.

cell

World Record: Photoelectrochemical (PEC): $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

New ultrafast laser spectroscopy technique uncovers how photoelectrodes produce solar hydrogen from water

- Semiconductor photoelectrodes convert solar energy directly into chemical fuels
- NREL's new probe measures transient electrical fields and shows how semiconductor junctions convert sunlight to fuels
- The field formed by the TiO₂ layer drives electrons to the surface where they reduce water to form hydrogen.
- The oxide prevents photocorrosion by keeping holes away from the surface
- This new understanding will lead to more stable and efficient solar fuel generators

The transient photoreflectance (TPR) technique technique measures short-lived electrical fields that arise due to charges generated by light that are driven in opposite directions by the properties of the interface.

Ye Yang et al, Science **350**, 1061-1065, (2015)

Perovskites

- Minority carrier diffusion lengths > $1\mu m$ in thin films, $175\mu m$ in single xtal c
- Monomolecular recombination lifetimes of 280 ns
- Minority carrier mobilities ~ 10 cm²/V/s are reasonable
- High $\varepsilon_r = 60-70$; Low $m^* = 0.1, 0.16$

Molecular approaches to solution-processable, defect-tolerant GaAs

Potential Costs

16% Perovskite compared to other PV

Stable perovskite PV meets 2020 targets (Woodhouse/NREL)

NREL R&D Themes

- Basic understanding of photophysics & transport
- Theory and modeling
- **Discovery**
- Device fabrication and characterization
- Synthesis & processing
- Interfaces
- Device operation & physics
- Stability and degradation mechanisms

Fundamental Perovskite work at NREL

Hot carrier dynamics

- Phonon bottle neck carrier cooling rate (~3x more efficient than GaAs) - Nature Photonics (2015)
- Role of excitons
 - Excitons enhance absorption and modify recombination J. Phys. Chem. Lett.,6, 4688-4692, 2015

Surface recombination

- Intrinsic surface recombination velocity is very low *Nature Comm*, **2015**, 6, 7961
- Difference in single crystal and thin film surface recombination velocities
- Grain boundaries impact on recombination
- Interface charge transport
 - Substrate controlled electronics (Kahn/Princeton)
 - SAM layer for enhanced charge separation (Snaith/Oxford, Ginger & Jen/UW, Friend/Cambridge)

Some Perovskite Advances

- Band bending at model SWCNT:perovskite interface using PES. Ultrafast spectroscopy shows efficient photoexcited hole extraction - J.Phys. Chem. Lett (2016)
- Developed new tools and techniques to evaluate absorber structure as function of processing. Using quantitative x-ray diffraction at SLAC showed that high efficiency device structures have a large amount of material in amorphous phase.

Square-Centimeter Solution-Processed Planar MAPbl₃ PSC with PCE >15%

Novel solution chemistry for uniform, high-crystallinity, planar perovskite films with high-aspect-ratio grains over a square-inch area; and >15% efficiency PSC with 1.2 cm² active area

Yang, et al. Adv. Mater. 2015, DOI:10.1002/adma.201502586.

New Device Level Stability Capabilities

Functional device studies using combinatorial device testing rig New stability parameter analysis systems

 Flow cell geometry, controlled temperature, humidity and atmosphere

Clean Energy Materials Challenges

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Numerous materials classes are vital to "Clean Energy Technologies"

8 | Fuel Cell Technologies Office

From E. Miller, DOE-EERE, Dec 2014

eere.energy.gov

Center for Next Generation of Materials by Design Energy Frontier Research Center

www.cngmd-efrc.org

- 1. Design and discover new energy-relevant materials with targeted functionalities.
- 2. Develop foundational theoretical, synthesis, characterization tools.
- 3. Incorporate functional metastable materials into MbD.
- 4. Develop a systematic theory-driven approach to guide synthesis.

Address four Critical Gaps limiting Materials by Design1. Multiple-Property Design3. Metastability2. Accuracy and Relevance4. Synthesizability

CNGMD Team Integrates Theory, Experiment, Data

LBL-Berkeley – Gerd Ceder (Chief Theorist) Kristin Persson NREL – Stephan Lany CSM – Vladan Stevanovic MIT – Alexie Kolpak

NREL – David Ginley (Chief Experimentalist) Andriy Zakutayev CSM – Brian Gorman MIT – Tonio Buonassisi Harvard – Dan Nocera Roy Gordon OSU – Janet Tate SLAC – Mike Toney

NREL – Bill Tumas (Director), John Perkins (Program Integrator)

Institute of

Energy Frontier Research Center www.cngmd-efrc.org **EXAMPLE 1** Berkeley

26

Theory Tools Development: DFT Improvements

- GW Corrections for bandgaps
 - One empirical parameter per TM atom, good trans to ternaries

S. Lany, Phys. Rev. B 87, 085112 (2013)

- Fitted Elemental Reference Energies (FERE) for heats of formation
 - μ^{0} (FERE) = μ^{0} (GGA+U) + $\delta\mu^{0}$ (FERE)
 - FERE reduces the mean average error (MAE) to 0.054 eV/atom ≈ 1 kcal/mol

Stevanovic et al. Phys. Rev. B 85, 115104 (2012)

- SCAN functional to reproduce basic MnO₂ properties
 - First functional to simultaneously reproduce strong covalent-like bonds and weaker long-range interactions
 - J. Perdew (Temple), CCDM EFRC

Kitchaev et al. Phys. Rev. 93, 045132 (2016)

Neural Networks for large-scale Defects
 A. Kolpak et al., in progress

Materials.NREL.gov

High-throughput calculations

DFT level (atomic structure and total energy)

- ca. 20,000 crystalline ordered materials
 - Repository of atomic structures
 - Thermochemistry and stability

GW level (electronic structure)

ca. 250 semiconducting and insulating materials

- So far: Mostly oxides, chalcogenides, nitrides
- Direct and indirect band gaps ۲
- Band-edge shifts wrt DFT ۲ (defects, IP/EA, band offsets)
- Effective masses, density of states ۲
- Optical properties, dielectric function, ۲ absorption spectra

15 D-

1

NREL High-Throughput Experimental Tools

Thin Film Deposition

- 4 Dedicated PVD System
- 3 RF sputtering
- 1 PLD
- Composition Gradients
- Thickness Gradients
- Temperature Gradients
- Ar, N, O, Ar/H₂S gasses
- Atomic S & N sources

Property Mapping

- 15 Mapping Tools
- Composition (XRF,RBS)
- Structure (XRD, Raman)
- Transport (4pp, Seebeck)
- Optical (UV-Vis, IR, PL)
- Surface (KP, XPS/UPS)
- Microscopy (SEM, AFM)

Analysis & Visualization

Advanced Data Tools

- NREL Data Network
- Igor PRO framework
- Extensible
- User-assisted analysis
- Data mining/analysis

In-Situ Tools at SLAC: In-situ crystallization of amorphous films

In-Situ Tools at SLAC: In-situ crystallization of amorphous films

Two Main Approaches to Materials by Design

1900

ONRE

1920

Design by Design Principles

- Many material systems with known structure and composition (e.g. ICSD)
- Functionality unknown
- Search via design principles for targeted functionalities

Missing Materials

- Many material systems, but structure unknown
- Many (~ 50–100) possible configurations, requiring energy minimization and stability analysis
- Target properties: first existence, then other properties

Metastable Compounds 1600 ground states (green) 1400 metastable (blue) 1200 1000 800 YUMAA 600 400 200

G. Ceder, and K.A. Persson C. Wolverton, et al. Journ of Mater, 65, 1501 (2013).

1980

2000

2020

1960

1940

Two Main Approaches to Materials by Design

Institute of HARVARD

Technology

501 (2013).

Implementing Inverse Design

Optical and Electrical: Region of Interest

Optical and Electrical properties optimized in composition region

Zn-Co-O as a hole transport layer (HTL) for OPV

High-throughput Discovery of New A₂BX₄ Compounds

250 are reported

406 are not reported ("missing compounds")

Predicted New A₂BO₄

Out of 63 missing oxides 46 not stable 17 stable

> Newly predicted: $Hg_2SiO_4 In_2HgO_4$ $Ti_2BeO_4 Ti_2SrO_4$ $Ti_2BaO_4 Ti_2ZnO_4$ $V_2BeO_4 V_2SiO_4$

A₂BX₄ search: ~80000 individual total-energy calculations (incl. structures and magnetic configurations)

DOE-BES-EFRC on materials and nanostructures by design

CID Predicted Ternary Materials

A₂BX₄ materials main group and 3d elements: Out of 684 variations, 429 are unreported 100 predicted stable, 11 undetermined, and 318 predicted not stable

X. Zhang, V. Stevanovic, M. d'Avezac, S. Lany, and A. Zunger, Phys. Rev. B, 86, 014109 (2012)

ABX materials with 8 electrons:

Out of 714 variations, 488 are unreported 235 predicted stable, 18 undetermined, and 235 predicted not stable

X. Zhang et al., Adv. Funct. Mater. 22, 1425–1435 (2013).

Identification of ABX ternary materials

HflrSb, ZrRhBi, ScRhTe, TaCoSn, TalrGe, VIrSi, **VRhSi and HfRhP have** been shown to crystallize in their predicted crystal structure.

Fast identification in multiphasic sample

X. Zhang et al. Nature Materials

Missing TaCoSn Compound

Cobalt chemical potential (eV)

Validation: growth of new TaCoSn

Oregon State

NORTHWESTERN

SLAC

Boulder

Zakutayev et al. J. Am. Chem. Soc., 2013, 135, 10048

Office of

Science

Perovskite Search: Proxy for Transport/Defect Tolerance

- Minority carrier lifetimes challenging for both computation and experiment
- The concept of defect tolerance can used as a proxy (qualitative)
- Defect tolerance is a consequence of the electronic structure

Zakutayev *et al. J. Phys. Chem. Lett.* 5 (2014) Brandt et al.*MRS Communications* **5**, 265–275 (2015) S.B. Zhang, *et al., Phys. Rev. B* 57, 9642 (1998)

Berkele

Classic III-Vs and II-Vis are defect intolerant: GaAs, InP, GaN, ZnO,...

Electronic structure of a defect tolerant

material

HARVARD

Electronic structure of MAPbl₃

In MAPbl₃:

- Pb 6s orbitals provide antibonding character to the VBM (s-p repulsion)
- With spin-orbit coupling, conduction band is more disperse

(MI) (MI)

Institute of

HARVARD

UNIVERSITY

R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, *MRS Communications* **5**, 265–275 (2015)

SONREL Berkeley

MINES

Electronic structure of MAPbl₃

In MAPbl₃:

- Pb 6s orbitals provide antibonding character to the VBM (s-p repulsion)
- With spin-orbit coupling, conduction band is more disperse

R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, *MRS Communications* **5**, 265–275 (2015)

Berkeley

HARVARE

Search 27,000 Inorganic Materials for s-VBM

R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, *MRS Comm.* **5**, 265 (2015) A. Jain, S.P. Ong, G. Hautier, *et al. APL Materials* **1**, 011002 (2013) www.materialsproject.org

Berkeley

(MI) (MI)

Institute of

HARVARD

Energy Frontier Research Center www.cngmd-efrc.org

Multiple Material Classes Identified

- Compounds with "lone-pair" cations: In⁺, Sn²⁺, Sb³⁺, Tl⁺, Pb²⁺, Bi³⁺
- Building libraries of hybrid materials through inorganic analogues

Bismuth Triiodide (Bil₃)

• First films synthesized exhibited room-temperature photoluminescence

i Nel : len l

TÅS

Institute of

Technology

HARVARD

UNIVERSITY

R.E. Brandt et al., J. Phys. Chem. Lett. 6, 4297 (2015).

CNGMD Energy Frontier Research Center www.cngmd-efrc.org **EINREL** Berkeley

MINES

Bil₃ – Carrier Lifetime Measurements

Informed new design criterion – purity of materials and growth environments

Institute of

HARVARD

R.E. Brandt et al., J. Phys. Chem. Lett. 6, 4297 (2015).

Energy Frontier Research Center www.cngmd-efrc.org NATIONAL DENEMBER LARGEATORY BERKELEY

49

Incorporating Metastability

Search for New Nitrides

Train data-mining algorithm on known **Oxides+Pnictides**

Cross-validated by "predicting" known nitrides. $\sim 80\%$ chance of recovery

492 suggested binary nitrides (Alkali, Transition, Main Group)

Candidate Stable Phases Co₂N, CoN, Cr₃N₂, Cr₃N₄, CrN, Hf₃N₄, Nb₂N, SbN, Sr₂N, Ta₂N, TeN₂, V₂N, V₃N₂, VN, Zn₃N₂

Institute of

HARVARD

Berkeley

Energy Frontier Research Center www.cngmd-efrc.org

51

Optoelectronic properties (Work in progress

Pathway to new nitrides – from search to application

Berkele

From design & discovery to properties search

- We calculate optoelectronic properties of newly predicted nitrides.
- Promising semiconductor nitrides *accessible via sputtering* will be further screened using higher levels of theory (G₀W₀)
- **Down-selection** for experimental synthesis and characterization

ELERATOR LABORATORY

In progress: Ternary Nitride Search

Berkeley

4000 potential ternary nitrides

Enormous exploration and design space for new nitrides!

Institute of

(MI) (MI)

HARVARD

UNIVERSITY

MINES

Sn Nitride Thin Films

• Sn₃N₄ is a potential PEC material:

- good optical absorption (E_g=1.6 eV)
- suitable VB position for H_2O oxidation

100 (20) 1733)

HARVARD

- n-type conductivity (light electrons)
- However: large hole effective masses

C. Caskey et al, J. Mater. Chem. C, 3, 1389(2015)

CONREL UNIVERSITY OF CALIFORNIA

Improved material: metastable Sn_{3-x}Ti_xN₄ optimal m* (m₀) 2.0 8 spinel+Tr N. spinel nergy (eV 2.0 3.0 0.0 1.0 x in Sn_{3-x}Ti_xN₄

- Sn_{3-x}Ti_xN₄ has better properties than Sn₃N₄
 - Theory: lighter m_h , same m_e , and lower E_g
 - Experiment: strong optical absorption
 - Also: SnTi₂N₄ is a new spinel nitride!!!
 - Structure: pure by XRD, spinodal by TEM

Realization of tetrahedral MnO by alloying with ZnO

ZnO has tetrahedral wurtzite structure similar to zinc-blende

Mixing enthalpy
$$\Delta H_{mix}(x) = (1 - x) \cdot H_{Mn0} + x \cdot H_{Zn0} + \beta \cdot x(1 - x)$$

•
$$\beta$$
 = **46** meV (RS), β = **94** meV (WZ)

T-x phase diagram

- Common tangent construction
- Ideal solution model for entropy

Optical absorption: Theory vs experiment

Measured absorption coefficient α (contcurred) and calculated band gaps (dashed line)

Metastable transition metal oxide alloy with unique semiconducting properties

- Band gap control through alloying
- Non-equilibrium growth via PLD
- PEC measurements

i Nel : len l

Institute of

HARVARE

Band alignment, carrier transport

Berkeley

56

MOx Polymorphs

Manganese Oxides

- Over 30 known polymorphs
- Energy storage, catalysis, pigments

Vanadium Oxides

(MI) (MI)

HARVARE

- Highly complex phase diagram
- Batteries, reagents, coatings

Berkeley

Challenging Energetics for MnO₂

- All known DFT methods fail to reproduce basic MnO₂ properties
- First functional to simultaneously reproduce strong covalent-like bonds and weaker long-range interactions
- Formation energies of MnO₂ polymorphs are reproduced in SCAN

Understanding of synthesis paths is required to rationally and effectively design metastable compounds

Controlled synthesis

In-situ experiments

SINREL Berkeley

Apply the same fundamental science used to understand properties to understand synthesis

Institute of

HARVARD

59

Need to understand thermodynamics in all relevant environments

- 1. Bulk energy of polymorphs
- 2. Intercalation of ions from solution
- **3. Surface energies in solution** Predicting nucleation behavior
- 4. Electrochemical transformations
- 5. Modeling solid-solid transformations

Kinetics of polymorph conversion

©NREL

Berkele

6. Substrate-controlled depositions

Polymorph Sampler

- Volume of configuration space ("width") of local minima shown to correlate with realization of different polymorphs
- Random structure sampling followed by local DFT relaxations used to estimate the "width"
- All experimentally realized polymorphs appear as high frequency structures in random sampling
- Translates into a simple and elegant approach for predicting polymorphism -Polymorph sampler

HARVARD

• Easy to apply in a high-throughput fashion

V. Stevanovic, Phys. Rev. Lett. 116, 075503 (2016)

CNGMD Energy Frontier Research Center www.cngmd-efrc.org CONREL BERKYLABORATORY BERKELEY

Realizability from the "width" of local minima

Configura- onal space

- For majority of systems, even well studied, only a relatively small number of polymorphs is known (experimentally realized)
- Theoretical predictions usually suggest a large number of low energy structures
- Our approach: "Width" of local minima matters, i.e. it is more probable to create exp. conditions that will prepare the system nearby larger ("wider") minima

MASSACHAUSETS

Random sampling to measure the "width"

Configura- onal space

 Random structure sampling followed by DFT relaxations can be used to measure/estimate the "width" of local minima

ENREL Berkeley

 Frequencies of occurrence in random sampling to assess the "width" of individual basins

> 1891:1801 1835

Institute of

HARVARD

Validation of the hypothesis - MgO and ZnO

- 2,000 random structures per system
- All experimentally realized polymorphs appear as high freq. structures in random sampling
- RS MgO about 25 times more frequent than any other structure, indicates why is RS the only exp. realized MgO structure
- Experimentally realized ZnO structures are three top occurring in random sampling

Berkeley

189) 180 1738)

HARVARD

CNGMD - Poly sampler applied in nitrides search

Berkeley

(VEL)(RU)

Institute of

HARVARD

UNIVERSIT

65

Brief Summary: Materials by Design

Materials by Design has advanced considerably

- Increasing number of active centers
- Structural and functional materials
- Tools being developed, databases being developed

Integration (and iteration) of theory and experiment is critical

- Tool development
- Validation, accuracy

Materials Properties for have been predicted and confirmed

New materials have been predicted and synthesized oxides, charge transport layers, absorbers, perovskite-analogs

Computational databases are becoming readily available, applied research can be built on top of these more basic science efforts

Theory and experiment can provide information on metastable systems, e.g. new nitrides, alloys, polymorphs

Predicting synthesis constitutes a grand challenge for materials science

Acknowledgements

NREL Slides and Content for PV:

Teresa Barnes, Joe Berry, Matt Beard, Dave Ginley, Dan Friedman, John Geisz, Sarah Kurtz, Joey Luther, Wyatt Metzger, Aaron Ptak, Matt Reese, Ingrid Repins, Paul Stradins, Vladan Stevanovic, Jao van de Lagemaat, Mary Werner, Greg Wilson, Mike Woodhouse, Andriy Zakutayev, Kai Zhu

NREL Slides and Content for Systems Integration and Soft Cost: Paul Denholm, Kristen Ardani, Jim Cale, Sarah Truitt

Terawatt PV Challenge (Fraunhofer-ISE, AIST, NREL,...) Eicke Weber F-ISE), Martin Green (UNSW) TW Challenge Workshop (Freiburg, March 2016)

Erice 2014 Materials for Renewable Energy and 2015 International School for Materials for Energy and Sustainability Lectures: Ahmad Hamza H. Ali, Albert Polman, Hans Werner Schock, Abdelilah Slaoui, Harry Atwater, BJ Stanbery

Others: Mike McGehee, Tonio Buonassisi, David Cahen

Acknowledgements: CID EFRC

Partner	Senior Investigators, Staff and Students, Graduates/Alumni
NREL	Dave Ginley, John Perkins, Stephan Lany, Andriy Zakutayev, Peter Graf, Jun Wei Luo, Paul Ndione, Haowei Peng, Vince Bollinger, Josh Martin, Mayeul d'Avezac, Alberto Franceschetti, Arkadiy Mikhaylushkin
Northwestern University	Ken Poeppelmeier, Art Freeman, Tom Mason, Giancarlo Trimarchi, Feng Yan, Arpun Nagaraja, Jimo Im, Kanber Lam, Romain Gautier, Kelvin Chang, Jeremy Harris, Karl Rickers, Evan Stampler, Nicola Perry, Veerle Cloet, Adam Raw
Oregon State University	Doug Keszler, John Wager, <i>Robert Kokenyesi, Jae-Seok Heo,</i> <i>Greg Angelos, Brian Pelatt, Ram Ravichandran,</i> Jeremy Anderson, Vorranutch Jieratum, Ben Waters, Emmeline Altschul
University of Colorado - Boulder	Alex Zunger, Liping Yu, Lijun Zhang, Josh Ford
SLAC	Mike Toney, Linda Lim, Kevin Stone, Yezhou Shi, Joanna Bettinger
Colorado School of Mines	Vladan Stevanovic, Xiuwen Zhang
	www.centerforinversedesign.

Acknowledgements: Center for Next Generation of Materials by Design

LBL: Gerd Ceder, Kristin Persson, Hong Kevin Ding, Patrick Huck, Wenhao Sun

- MIT: Alexie Kolpak, Tonio Buonassisi, Yun Liu, Bernardo Orvananos, Daniil Kitchaev, Brian Kolb, Spencer Wyant, Riley Brandt, Vera Steinmann, Rachel Kurchin, Sin Cheng, Robert Hoye
- Harvard: Dan Nocera, Roy Gordon, Zamyla Chan, Casandra Cox, Xizhu Zhao, Lu Sun, Chuanxi Yang, Sang Bok Kim, Danny Chua
- CSM: Vladan Stevanovic, Brian Gorman, Ann Deml, Prashun Gurai, John Mangum
- SLAC: Mike Toney, Laura Schelhas, Kevin Stone, Kipil Lim, Johanna Weker
- **OSU: Janet Tate,** James Haggerty, Bethany Matthews, Chiyuki Sato
- NREL: Dave Ginley, John Perkins, Stephan Lany, Andriy Zakutayev, Kristen Kennedy, Paul Ndione, Peter Graf, Azure Avery, Andre Bikowski, Sebastian Siol, Lauren Garten, Aaron Holder, Pawel Zawadzki

www.cngmd-efrc.org

