

What Limits the Performance of Wide Bandgap Cu(In,Ga)S₂ Solar Cells ?

UNSW SPREE Seminar, May 2022

Sudhanshu Shukla Senior Researcher at IMEC Belgium Formerly at <u>University of Luxembourg</u>

Climate EMERGENCY

Response : Shift from fossil fuels to renewables

Carbon neutral and circular economy : Solar will be a major player

"I'd put my money on the sun and solar energy. What a source of power! I hope we don't have to wait till oil and coal run out before we tackle that" – **Thomas Edison**

Utilization of solar spectrum : Efficient light absorption

Why Wide band-gap cells ? : Cu(In,Ga)S₂

Outline

Pure Sulfide Cu(In,Ga)S₂ (E_g : 1.5 – 2.4 eV) Low efficiency compared to CIGSe!

Interface passivation

Path forward

- Higher quasi-Fermi level splitting
- Longer carrier lifetimes
- Improved carrier collection
- Growth on TCOs

V_{oc} deficit with increasing bandgap : Plateaus

Photovoltage Deficit

Appl. Phys. Lett. 80, 2598, 2002

Before Cu(In,Ga)S₂: CuInS₂

Remain limited by deep defects (two) and near interface defects

Cu(In,Ga)S₂ Solar Cells

UNSW SPREE Talk, May 2022

Open QUESTIONS

- What limits the V_{oc} in CIGS solar cells \rightarrow Bulk as well as interface
- What are the deep defects in CIGS ? How can it be passivated ?
- How to fix interface recombination losses in CIGS ?

Absorber growth : Co-evaporation

GGI : [Ga]/[Ga+In] ~ 0.12 - 0.18

Structure and topography

Cu-rich and Cu-poor CIGS

Deep defect : DI and D2

Two dominant deep defects at ~ 200 meV (D1) and 500 meV (D2) far from the band-edge

Cathodoluminescence : Band-edge and defect emission

Higher band-edge emission and lower defect band emission for Cu-poor absorbers

Lower V_{oc} deficit for Cu-poor CIGS

Thinking about even more Cu-poor films ? : OVCs

Shukla, Sood et al., Joule, 5, 1, 2021

Sudhanshu.shukla@imec.be

Interface losses

So, what are these defects ?

Defect Formation Energies : Ab-initio calculations

Deep defects : Anti-site defects

- Acceptor like Cu_{In} and Cu_{Ga} have the lowest formation energy in Cu-rich domain → killer defects
- Donor like In_{Cu} and Ga_{Cu} defects have low formation energy in Cu-poor domain → compensation ?
- More Cu-poor CIGS : Think about defect complexes V_{Cu} + (In_{Cu} + Ga_{Cu})

Charge carrier lifetime

CIGS/Zn(O,S) : τ_1 : 0.6 ns and τ_2 : 4.5 ns

High non-radiative recombination - Deep defects must be passivated

Shukla, Sood et al., Joule, 5, 1, 2021

22

Best solar cell performance

Reduced V_{oc} deficit

Current status

What's next ? A possible roadmap

່ເມງອ

Projects involving higher E_g materials

Prof. Susanne Siebentritt Dr. Mohit Sood Damilola Adeleye LPV group

Prof. Rachel Oliver Dr. Gunnar Kusch Prof. Geoffroy Hautier Gian-Marco Rignanese

Reduce your carbon footprint

Dr. Nathalie Valle Dr. Brahime El Adib

Thank you for your attention

LINEC Prof. Bart Vermang

Fonds National de la <mark>Recherche</mark> Luxembourg