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What does future of PV generation in Australia
look like?: Risks and Challenges




WHO WANTS TO
KNOW THEIR FUTURE!?

Predictions based on data science
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Figure 1: Most popular new power-generating technology installed, 2021
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Electricity generation in Australia
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Source: Clean Energy Report 2023

* Out of the total electricity generated in 2022, about 36% of the electricity was generated from the renewables.




PV installations in Australia from 2001-2023

Estimated electricity output in future

Source: APVI
2023-06

Reported installed capacity (kW): 32,095,230
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Source: electricity network transformation roadmap: key concepts report, 2016

» Large-scale deployments and investments in solar PV have increased recently and it is expected to further

increase in future.
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Global surface temperature change (°C)
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Risks

Power losses

Resource variability

Power outages due to frequent
extreme weather events

Module degradations




What is the future of PV generation in Australia look like?

Weather-induced variability in the energy
generation




Approach
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Climate models are a group of complex mathematical equations to
characterize how energy and matter interact in different grid points.

A '1 CENTER FOR SCIENCE  L.S. Gardiner/UCAR
U C R L EDUCAT|ON ©UCAR 2021. Use of this image is permitted per the terms of use at scied.ucar.edu.
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Ambrizzi, T., M. Reboita, R. Rocha, and M. Llopart, 2018: The state-of-the-art and fundamental aspects of regional climate modeling in South America. Annals of the New York Academy of Sciences, 1436, https://doi.ora/10.1111/nvas 13932,
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https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/nyas.13932
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Confidence level on future projections

Significant change: 50% or more of the models significant
change, and at least 70% of them agree on the direction of

change.

less than 50% of the models with

significant change.

Significant disagreement: at least 50% of the models with
significant change, and less than 70% of them agree on the

direction of change.
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Resource Assessment : Solar PV viability
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Solar Resource Reliability

Availability
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Prasad AA, Taylor RA, Kay M. Assessment of solar and wind resource synergy in Australia. Appl Energy 2017;190:354—67. hitps:.//doi.org/https://doiorg/10.1016/j apencrgy 2016 12,135,
Gunturu UB, Schlosser CA. Characterization of wind power resource in the United States. Atmos Chem Phys 2012;12:9687-702. https://doj.org/10,5194/acp-12-9687-2012

Availability : frequency of
occurrences of efficient resources
for solar power generation

Episode Length : period of time
where solar power is usable for
consecutive hours

1 reliable power supply
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Solar Resource Intermittency
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Lulls: consecutive hours of almost no power generation during the day




Clear Days

Historical (1976-2005) Neqr Future (2030-2059) Falf future (2070-2099)

z A .~
7

a b ¥ ¢

20 60 100 140 180 220 260 300 -20 -16 -12 -8 -4 0

Overcast Days

7

days/year days/year

T Clear Days in the East
-

0 10 20 30 40 50 60 70

Intermittent Days

days/year

a2

— —r 7

Poddar, S., Kay, M., Prasad, A., Evans, P. J. & Bremner, S. (2023). Changes

in solar resource intermittency and reliability under Australia’s future warmer
climate. Solar Energy (under review).

40 72 104 136 168 200 0
days/year days/year



* On a clear sky day, PV power generated is expected to follow a diurnal curve similar to the GHI at that location

* Fluctuations in the amount of GHI during the day are responsible for intermittent periods of PV power output.

Up-Ramp Event Down-Ramp Event

: n —— Observed Power :: i : —— Observed Power

o a —— Clear Sky Power b : —— Clear Sky Power . .
RN g e Sudden increase or decrease in power output due to cloud
2 o B movements is termed as called ramps.
E = E o
g - * positive ramp event : ] In power output
5 = F
§ - ; * negative ramp event : | in power output
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(Wellby and Engerer 2016)

Solar power ramps are estimated from the expected future power output using PVLIB energy modelling.

=3
*  Wellby SJ, Engerer NA. Categorizing the meteorological origins of critical ramp events in collective photovoltaic array output. J Appl Meteorol Climatol 2016;55:1323—-44. https://doi.org/10.1175/JAMC-D-15-0107.1. ot ;1
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Poddar, S., Evans, J.P., Kay, M. ef al. Assessing Australia’s future solar power ramps with climate projections. Sci Rep 13, 11503 (2023). doi.org/10.1038/s41598-023-38566-z
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Ramp Magnitude

instability and voltage flicker issues
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Poddar, S., Evans, J., Kay, M., Prasad, A., and Bremner., S (2023). Assessing Australia’s future solar power ramps with climate projections. Scientific
Reports

require more robust ramp control devices to avoid grid
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Long-term projections in PV potential
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Net Contribution to PV potential change

Radiation

e 4
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v' Temperature contributes highest followed by radiation and wind.




Climate Change Impacts: Cell Temperature

Historical (1990-2009) Change in Near Future (2020-2039) Change in Far Future (2060-2079)
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Degradation Modes and Role of Climate

Relative - Climate
) Temperature
il p UV Radiation Stresses
* Relative humidity, temperature and UV radiation
. Deeradation are major environmental parameters that causes PV
Hydrolysis Thermal Photo Degradation g module degradation.
Degradation Degradation Precursors
* Future climate change can impact the degradation
rates of the modules.
*  Encapsulant Discoloration
*  Delamination D dati
* Cell Ribbon Corrosion egradation
*  Cell Crack Modes

« PID

e Junction Box Failure
* Glass Breakage

¢ Burn Marks




Hydrolysis Degradation

Thermal Degradation

Photo Degradation

Degradation Mechanisms of mono-Si Modules
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Delamination : Future Changes
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Total degradation rate & its impact

Historical Projected Changes under RCP2.6  Projected Changes under RCP8.5
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* Depends on the POC of each
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* LCOE is calculated assuming the costs don't change in
the future.

{ LCOE

7
Changes in LCOE (%)

Poddar, S., Rougieux, F., Evans, P. J., Kay, M., Prasad, A. & Bremner, S. (2023c). Accelerated degradation of photovoltaic modules under a future warmer climate. Progress in Photovoltaics:
Research and Applications (under review).
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Current Challenges

* Uncertainty range
* High-temporal resolution climate model data
*  POC of degradation modes would vary with the location and climate type

 Difficulty in empirical modelling of various modes that are completely dependent on either lab
tests or field inspection

* String and cell level analysis of module degradation




Take Away Points

* Need site-assessment and material selections that incorporates climate
change.

* We need to adapt mitigation strategies to manage weather-induced
variability

* It will be interesting to do comparative analysis of different PV technologies
to suggest climate-resilient technologies for different locations.

* Co-existence of multiple renewable technologies at the same farm




Future Directions

Module Degradation Framework and Modelling
Clear-sky classification scheme and variability metrics
Extreme weather event impact on energy generation

Co-located Solar and Wind farm: possibilities, challenges and risks
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