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Content
• Surface recombination basics

1. Key aspects on the dielectric-silicon interface
2. Consistent surface recombination metrics 
3. Intrinsic vs Extrinsic surface passivation
4. Potential of charge-assisted (field-effect) 

passivation
5. Damage free plasma hydrogenation
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Surface recombination in silicon
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The silicon-dielectric interface
• So far the two typical key elements to 

recombination at the silicon surface are:

– The concentration of trap states (CHEMISTRY)
– The concentration of carriers: ns, ps (CHARGE)

• Two other key aspects:
– Nature of interface states
– Their ability to capture carrier (𝜎n,p)
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The silicon-dielectric interface
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𝑅 ∝ 𝑁/×𝑝;
R. S. Bonilla and P. R. Wilshaw J. Appl. Phys. 
121, 135301 (2017)
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The silicon-dielectric interface
• The ability of states to capture carriers
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Surface recombination metrics
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Intrinsic vs Extrinsic passivation
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Surface Passivation

• CHARGE is essential to obtain good 
surface passivation!

• Intrinsic passivation
– That due to the dielectric film

in the as deposited state
– Chemical and FEP (Charge-assisted)

• Chemistry and charge difficult to optimise
– Limited by the deposition process

• If charge deposited after the film deposition (extrinsic) it can 
be optimised independent of chemistry
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Potential of Extrinsic Passivation

• Externally added charge to the dielectric after 
deposition –e.g. Corona charge:
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Potential of Extrinsic Passivation
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Bonilla et. al. Phys. Status Solidi A 214, 
No. 7, 1700293 (2017)
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Potential of Extrinsic Passivation
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a-Si/SiOx/SiNx

R. S. Bonilla et al. Phys. Status Solidi RRL 
11, No. 1 (2017) 
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State-of-the-art
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A. Cuevas et al. IEEE PVSC 2015, 6pp 
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State-of-the-art
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Proof of concept:
Corona Discharge

Bonilla et. al. Phys. Status Solidi A 214, 
No. 7, 1700293 (2017)

R.S. Bonilla et al. / Applied Surface 
Science 412 (2017) 657–667
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Extrinsic Field Effect Passivation

• Charge added to the dielectric after 
deposition greatly improves passivation.

• It allows optimisation of FEP 
independently of chemical passivation

• How important is it for a solar cell?
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Field Effect Passivation in cell 
performance (Quokka)
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R.S. Bonilla et al. / Applied Surface 
Science 412 (2017) 657–667
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But… Is this Charge Stable?

• Corona discharge ...
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Ionic field effect passivation
• Charge is introduced into dielectric films at high 

temperature and then permanently quenched in 
place by cooling to room temperature
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Ionic field effect passivation
• Diffusion of Potassium ions into SiO2
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Bonilla et al. Solid State 
Phenomena Vol. 242 
(2016) pp 67-72
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Diffusion + Drift of Potassium in SiO2
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Long term stability of ion-charged SiO2
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Diffusion Diffusion + Drift
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Long term stability of ion-charged SiO2
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Diffusion + Drift

Direct measurement of 
charge concentration 
using kelvin probe and 
capacitance-voltage
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Long term stability of ion-charged SiO2
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Exceeding 10k days 
~ 30 Years
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Towards industrially compatible extrinsic 
passivation
(fast and cost-effective)

• Field effect
– Stabilise charge using ions: lab conditions >4 years, 

likely indefinite. But, as yet, slightly worse passivation
– Working conditions stability: to be tested 
– Compatibility of process: K ions, others possible 
– Industrial deposition technique for ions
– Process temperature: 450-550 C
– Speed of process: currently 1-2 mins, but possible in 

seconds 
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Extrinsic Hydrogen Passivation

• Hydrogen is effective at passivating defects and 
dangling bonds at the surface or in the bulk of 
silicon wafers

• Industrially – dielectrics + firing
• Research – Forming Gas anneals, Remote 

Hydrogen Plasma

25sebastian.bonilla@materials.ox.ac.ukExtrinsic surface passivation
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Shielded Hydrogen Passivation

26sebastian.bonilla@materials.ox.ac.uk

• Uses a plasma source of 
atomic hydrogen

• A thin palladium “shield” is 
inserted between the plasma 
and the sample 

• Protects against UV, high 
energy particles

• Damage free plasma 
hydrogenation

Extrinsic surface passivation

P Hamer, et al. Phys. Status Solidi RRL 11, 2017
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SHP - Results
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eCV measurements of active boron
concentration vs depth after 20 min
exposure at 200 oC.

Extrinsic surface passivation

P Hamer, et al. Phys. Status 
Solidi RRL 11, 2017



Department of Materials
Semiconductor and Silicon Photovoltaics Group

Poisoning and Thicker Foils
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eCV plots using leaves with and
without “poisoning”.

eCV plots using a 100 nm thick
“leaf” and a 10 µm thick Pd/Ag
“foil”.

Extrinsic surface passivation

Bourret-Sicotte, et al.  Phys. Status Solidi
A 214, No. 7 (2017)
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Industrial Application
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• Potential	for	in-line	processing
• Quick,	damage-free	hydrogen	

exposure
• Potential	for:	

• low	temperature	
processing,	

• passivation	without	firing	
dielectrics,	

• passivation	of	carrier	
selective	contacts.

Extrinsic surface passivation

Bourret-Sicotte, et al.  Phys. Status Solidi
A 214, No. 7 (2017)
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Summary
• Understanding of dielectric surface passivation
• Extrinsic FEP can be very effective. SRV<0.1 

cm/s
– It is also independent from the chemical and optical 

properties of the dielectric.
– Possible combination with damage free hydrogenation

• Progress towards stable, fast, commercial, 
extrinsic field effect passivation.
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Passivation of all-angle black surfaces for silicon solar cells
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A B S T R A C T

Optical losses at the front surface of a silicon solar cell have a significant impact on efficiency, and as such,
efforts to reduce reflection are necessary. In this work, a method to fabricate and passivate nanowire-pyramid
hybrid structures formed on a silicon surface via wet chemical processing is presented. These high surface area
structures can be utilised on the front surface of back contact silicon solar cells to maximise light absorption
therein. Hemispherical reflectivity under varying incident angles is measured to study the optical enhancement
conferred by these structures. The significant reduction in reflectivity ( < 2%) under low incident angles is
maintained at high angles by the hybrid textured surface compared to surfaces textured with nanowires or
pyramids alone. Finite Difference Time Domain simulations of these dual micro-nanoscale surfaces under
varying angles support the experimental results. In order to translate the optical benefit of these high surface
area structures into improvements in device efficiency, they must also be well passivated. To this end, atomic
layer deposition of alumina is used to reduce surface recombination velocities of these ultra-black silicon
surfaces to below 30 cm/s. A decomposition of the passivation components is performed using capacitance-
voltage and Kelvin Probe measurements. Finally, device simulations show power conversion efficiencies
exceeding 21% are possible when using these ultra-black Si surfaces for the front surface of back contact silicon
solar cells.

1. Introduction

In order to improve the efficiency of silicon (Si) solar cells, the front
surface can be designed with antireflective (AR) structures that
enhance carrier generation in the cell. Current approaches to reducing
top surface reflectance for monocrystalline silicon cells use thin film
coated micron-scale pyramidal structures formed from alkaline solu-
tions that etch preferentially along certain Si crystal planes. For solar
cells made from multicrystalline silicon wafers, where the random
nature of the grain orientations precludes the formation of pyramids,
acid texturing is instead used. Whilst these methods are industry
standards, new approaches have emerged to improve on optical
absorption by utilizing nanoscale texturing. Examples include nano-
textured surfaces formed via laser ablation [1,2], reactive ion etching
[3,4], and wet chemical etching [5–9]. Several solar cells with nanowire
AR structures have recently been reported with high power conversion
efficiencies. Savin et al. created a nanowire solar cell using deep
reactive ion etching (DRIE) with an efficiency of 22.1% [10]. This
approach to texturing has also grown in interest recently due to
emergence of diamond-wire sawing which complicates traditional
methods for texturing of multicrystalline silicon [11]. Ingenito et al.
[12] demonstrated the use of dual-textured black Si (nano-cones on

micro-pyramids), fabricated also via plasma etching, on back contact
solar cells, achieving power conversion efficiencies up to 19.1%.
Recently, dual-textured black Si surfaces created using solution-based
processes to form nanowire-pyramid hybrid structures have been
shown to exhibit average reflectance < 2% for light incident perpendi-
cular to the surface [13]. The simplicity of producing this ultra-black Si
makes it promising for photovoltaic applications.

The top-down fabrication of silicon nanowires using solution
processing has risen in popularity as a cost effective and practical
way of producing high aspect ratio nanowires with near-vertical
sidewalls, compared to lithography and etching methods [14]. In
particular, the metal assisted chemical etch (MACE) process, whereby
silicon nanowires are formed using a noble metal and hydrofluoric acid
(HF) has attracted much attention for several reasons. Firstly, it is a
simple and cost-effective method of etching various Si nanowires with
controllable parameters. All of the processes can be done in chemical
facilities without the need for expensive and complicated equipment.
Secondly, MACE is much more flexible and can be used to make high
surface-to-volume ratio structures with various cross-sectional shapes
in comparison to vapour-liquid-solid (VLS) based methods that can
only be used to grow wires with circular cross sections [15]. Si
nanowires fabricated by MACE generally possess high crystalline
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