Department of Materials Semiconductor and Silicon Photovoltaics Group

Extrinsic surface passivation of silicon solar cells

Ruy Sebastian Bonilla

Content

- Surface recombination basics
- 1. Key aspects on the dielectric-silicon interface
- 2. Consistent surface recombination metrics
- 3. Intrinsic vs Extrinsic surface passivation
- 4. Potential of charge-assisted (field-effect) passivation
- 5. Damage free plasma hydrogenation

Surface recombination in silicon

The silicon-dielectric interface

- So far the two typical key elements to recombination at the silicon surface are:
 - The concentration of trap states (CHEMISTRY)
 - The concentration of carriers: n_s , p_s (CHARGE)
- Two other key aspects:
 - Nature of interface states
 - Their ability to capture carrier ($\sigma_{n,p}$)

The silicon-dielectric interface

The silicon-dielectric interface

• The ability of states to capture carriers

$$S_{n0} = D_{it}\sigma_n v_{th}$$
$$S_{p0} = D_{it}\sigma_p v_{th}$$

Surface recombination metrics

$$S_{eff} = \frac{1}{\Delta n} \frac{n_s p_s - n_{ie}^2}{\frac{p_s + n_i}{S_{n0}} + \frac{n_s + n_i}{S_{p0}}} \qquad J_{0,surf} = \frac{q n_{ie}^2}{\frac{p_s + p_1}{S_{n0}} + \frac{n_s + n_1}{S_{p0}}}$$

K. R. McIntosh and L. E. Black J. Appl. Phys. 116, 014503 (2014)

Approximation	$S_{\it eff}$	J_{0S}
Negligible Q such that $n_s = n_d$	S_{p0}	$q \frac{S_{p0}}{n_d} n_{ie}^2$
Low Q , low injection	$S_{p0} \exp\left[rac{-Q}{\sqrt{kT\epsilon_{Si}N_D}} ight]$	$q \frac{S_{p0}^{a}}{n_{d}} \exp\left[\frac{-Q}{\sqrt{kT\epsilon_{Si}N_{D}}}\right] n_{ie}^{2}$
Large positive Q (strong accumulation)	$S_{p0}n_drac{2kT\epsilon_{Si}}{Q^2}$	$q S_{p0} rac{2kT \epsilon_{Si}}{Q^2} n_{ie}^2$
Large negative Q (strong inversion)	$S_{n0}n_d \frac{2kT\epsilon_{Si}}{Q^2}$	$q S_{n0} rac{2kT\epsilon_{Si}}{Q^2} n_{ie}^2$

sebastian.bonilla@materials.ox.ac.uk

Intrinsic vs Extrinsic passivation

defect:

$$S_{eff} = \frac{1}{\Delta n} \frac{n_s p_s - n_{ie}^2}{\frac{p_s + n_i}{S_{n0}} + \frac{n_s + n_i}{S_{p0}}} \qquad Q_{it} = 10^{11} \, e/cm^2$$

 $\Delta n = 10^{15} \text{ cm}^{-3}$

 $R_s \propto D_{it} \times \sigma_p \times p_s$

Surface Passivation

- CHARGE is essential to obtain good surface passivation!
- Intrinsic passivation
 - That due to the dielectric film in the as deposited state
 - Chemical and FEP (Charge-assisted)
- Chemistry and charge *difficult to* optimise
 - Limited by the deposition process
- If charge deposited *after* the film deposition (extrinsic) *it can be* optimised independent of chemistry

(a)

Potential of Extrinsic Passivation

• Externally added charge to the dielectric *after* deposition –e.g. Corona charge:

Potential of Extrinsic Passivation

4%H anneal: 0.6 cm/s

H passivation: 0.17 cm/s

Bonilla et. al. Phys. Status Solidi A 214, No. 7, 1700293 (2017) Δn=10¹⁵ cm⁻³

Extrinsic surface passivation

Potential of Extrinsic Passivation

a-Si/SiOx/SiNx

 $R_s \propto D_{it} \times \sigma_p \times p_s$

R. S. Bonilla et al. Phys. Status Solidi RRL

11, No. 1 (2017)

Extrinsic surface passivation

sebastian.bonilla@materials.ox.ac.uk

State-of-the-art

State-of-the-art

Proof of concept: Corona Discharge

R.S. Bonilla et al. / Applied Surface Science 412 (2017) 657–667

Bonilla et. al. Phys. Status Solidi A 214, No. 7, 1700293 (2017)

Extrinsic surface passivation

Extrinsic Field Effect Passivation

- Charge added to the dielectric *after* deposition greatly improves passivation.
- It allows optimisation of FEP independently of chemical passivation
- How important is it for a solar cell?

Field Effect Passivation in cell performance (Quokka)

R.S. Bonilla et al. / Applied Surface Science 412 (2017) 657–667

But... Is this Charge Stable?

• Corona discharge ...

Ionic field effect passivation

 Charge is introduced into dielectric films at high temperature and then permanently quenched in place by cooling to room temperature

Ionic field effect passivation

Diffusion of Potassium ions into SiO2

Bonilla et al. Solid State Phenomena Vol. 242 (2016) pp 67-72

Extrinsic surface passivation

Extrinsic surface passivation

sebastian.bonilla@materials.ox.ac.uk

Long term stability of ion-charged SiO₂

Diffusion + Drift

Long term stability of ion-charged SiO₂

Direct measurement of charge concentration using kelvin probe and capacitance-voltage

Towards industrially compatible extrinsic passivation

(fast and cost-effective)

- Field effect
 - Stabilise charge using ions: lab conditions >4 years, likely indefinite. But, as yet, slightly worse passivation
 - Working conditions stability: to be tested
 - Compatibility of process: K ions, others possible
 - Industrial deposition technique for ions
 - Process temperature: 450-550 C
 - Speed of process: currently 1-2 mins, but possible in seconds

Extrinsic Hydrogen Passivation

- Hydrogen is effective at passivating defects and dangling bonds at the surface or in the bulk of silicon wafers
- Industrially dielectrics + firing
- Research Forming Gas anneals, Remote Hydrogen Plasma

Shielded Hydrogen Passivation

- Uses a plasma source of atomic hydrogen
- A thin palladium "shield" is inserted between the plasma and the sample
- Protects against UV, high energy particles
- Damage free plasma hydrogenation

P Hamer, et al. Phys. Status Solidi RRL 11, 2017

Poisoning and Thicker Foils

sebastian.bonilla@materials.ox.ac.uk

Industrial Application

- Potential for in-line processing
- Quick, damage-free hydrogen exposure
- Potential for:
 - low temperature processing,
 - passivation without firing dielectrics,
 - passivation of carrier selective contacts.

Bourret-Sicotte, et al. Phys. Status Solidi A 214, No. 7 (2017)

Summary

- Understanding of dielectric surface passivation
- Extrinsic FEP can be very effective. SRV<0.1 cm/s
 - It is also independent from the chemical and optical properties of the dielectric.
 - Possible combination with damage free hydrogenation
- Progress towards *stable*, fast, commercial, extrinsic field effect passivation.
 Fraunhofer

In collaboration with:

Extrinsic surface passivation

Contents lists available at ScienceDirect

Solar Energy Materials & Solar Cells

journal homepage: www.elsevier.com/locate/solmat

Call for Papers: Special Issue on Surface and Interface Passivation in Crystalline Silicon Solar Cells

-Fundamentals and new concepts of silicon surface passivation
-Novel thin film dielectrics and deposition technology
-Modelling and characterisation methods of surface charge dynamics
-Review papers on surface passivation using AlOx, SiOx and SiNx
-Implementation of passivation technology into solar cell manufacturing
-Passivated hole and electron selective contacts