Performance Evaluation in Conventional and Rectenna Solar Cells

Sachit Grover
Device Physicist, First Solar, Inc.
Santa Clara, CA, USA
First Solar

10GW INSTALLED WORLDWIDE

Enough panels to circle THE EARTH 3.5 TIMES

Enough to power WASHINGTON D.C. for A YEAR

Equivalent to 7,000 OLYMPIC swimming pools

POWER for 5,000,000 average homes

= 500 SWIMMING POOLS

= 18,000,000,000 liters of water SAVED

= 100,000 HOMES

© Copyright 2015, First Solar, Inc.
San Luis Obispo County, California
Customer: MidAmerican
Size: 550MW (AC)
Construction Time: 2011—2015
Acres: ~7,800 site
Modules: ~9 million

Cars Removed: 73,000
Tons CO₂ Displaced Annually: 377,000

TOPAZ SOLAR FARM
Record efficiency: 18.6% aperture area efficiency (18.2% full area)

"At one time, we might have been characterized as a low cost, low efficiency technology, but consistent with our technology projections we are now proving that CdTe thin film delivers both industry-leading performance AND sustainable thin-film cost structures."

-Raffi Garabedian, First Solar CTO

http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
PV Module technology & manufacturing

First Solar Fully Integrated, Automated and Continuous Thin Film (CdTe) Process

- 98-99% reduction in semiconductor material
 - Direct bandgap material
- Fully integrated, continuous process vs. batch processing
- Large 60 x 120cm (2' x 4') superstrate vs. 6" wafers

Conventional Crystalline Silicon Batch Technology

Polysilicon ➔ Ingot ➔ Wafer ➔ Solar Cell ➔ Solar Module
Superior Temperature Coefficient of CdTe yields more energy

- Temperate Climate Example:
 - Module Temps often reach 65° C; 40° C above the STC rating
 - The silicon module power output will be reduced by up to 20% at this temperature
 - FSLR output will be reduced by only 10%

- Hot Climate:
 - More hours at higher temps (Module temps can reach 85° C)
 - FS Advantage grows more pronounced

Virtuani, 25th EUPVSEC, 2010
Combining V_{OC} and $V_{OC}(T)$ to quantify recombination in solar cells

Outline

• Derive theoretical dependence of V_{OC} on
 • Light intensity
 • Temperature
 • Strength of recombination channels

• Apply formulation to
 • Quantify recombination in different regions of the cell
 • Extract material and interface quality

Grover et. al., APL, 103, 093502, 2013
Express V_{OC} in terms of SRH recombination in different regions

Quantitative estimate of (microscopic) recombination from conventional (macroscopic) measurements
Recombination \rightarrow Quasi-Fermi separation \rightarrow V_{OC}

$$V_{oc} = \frac{kT}{q} \ln\left(\frac{J_{sc}}{J_{o,total}} + 1 \right)$$

Not precise but workable!

Loss of exact dependences on recombination mechanisms

$$J_{o,total} = J_{o,Radiation} + J_{o,Auger} + J_{o,SRH} + J_{o,emitter} + J_{o,rear}$$

Heterojunction solar cell

Majority of photogenerated carrier recombination at V_{OC}
Relating V_{OC} to carrier concentrations via β

For constant QFL separation, β is constant across cell

$$\beta^2 = \frac{N_D \Delta p}{n_i^2} \quad \text{in quasi-neutral region}$$

β can similarly be used to relate n_e and p_h at interface

How to think of V_{OC} in this analysis:
- Not a performance metric but a variable
- Depends on light intensity, temperature, and recombination
- Constant or near constant throughout the cell
 - Breaks down for very strong recombination

$$V_{OC} = E_{F_n} - E_{F_p} = \frac{kT}{q} \ln \left(\frac{n_e p_h}{n_i^2} \right) = \frac{kT}{q} \ln(\beta^2)$$
Recombination rate depends on limited availability of carriers

Rate limiting carrier type:

- Interface: electrons
- Quasi-neutral: holes
- Space-charge: both

- Express recombination in terms of β
- Recombination
 - Rate per unit volume: U_{SRH}
 - Rate integrated over thickness: $R_{SRH} = U_{SRH} \times \text{thickness}$
- Equate generation and recombination $G \times W = \Sigma R_{SRH}$
 - $G \times W = J_{ph}$
Defining all recombination with common β

- Simplified SRH equation:
 \[U_{SRH} = \frac{np}{\tau_p n + \tau_n p} \]

- Quasi-neutral/Bulk ($n=1$)
 - $N_D >> \Delta p$
 - Activation: E_g
 \[R^b = W_b U_{SRH}^b = W_b \frac{\Delta p}{\tau_p} = \left(\frac{W_b n_i^2}{N_D \tau_p} \right) \beta^2 = R_0^b \beta^2 \]

- Interface ($n=1$)
 - $p >> n$
 - Activation: $\Phi_{n,0}^n$
 \[R^i = S_n n_e = S_n N_C \exp\left\{ -\frac{\Phi_{n,0}^n}{kT} \right\} \beta^2 = R_0^i \beta^2 \]

- Space charge ($n=2$)
 - $p \approx n$
 - Activation: E_g
 \[R^d = W_d U_{SRH}^d = \left(\frac{W_d n_i}{\tau_p + \tau_n} \right) \beta = R_0^d \beta \]
Recombination = Generation

\[R^b + R^l + R^d = \int G_x \, dx = G_{avg} W \]

\[R_0^b \cdot R_0^l \cdot R_0^d = \int G_x \, dx = G_{avg} W \]

Solve quadratic to obtain \(\beta \) & \(V_{OC} \)
Formula for V_{OC}

$$V_{OC} = 2 \frac{kT}{q} \ln \left[\frac{k_1 \left(\sqrt{1 + k_2 G_{avg}} + 1 \right)}{n_i} \right]$$

V_{OC} dependence on:

- Operating conditions: light intensity, temperature
- Strength of SRH recombination in bulk, interface, and depletion

$$k_1 = \frac{R_0^d}{2 \left(R_0^l + R_0^b \right)}; \quad k_2 = 4W \frac{\left(R_0^l + R_0^b \right)}{(R_0^d)^2}.$$
Fitting the light intensity dependence of V_{OC}

$$V_{OC} = 2 \frac{kT}{q} \ln \left[\frac{k_1 \left[\sqrt{1 + k_2 G_{avg}} - 1 \right]}{n_i} \right].$$

$$k_1 = \frac{R_0^d}{2(R_0^I + R_0^b)}; \quad k_2 = 4W \left(\frac{R_0^I + R_0^b}{R_0^d} \right)^2.$$

Coefficients (values ± sigma)
- $k_1 = 3.5E14 ± 4E12$ cm$^{-3}$
- $k_2 = 20.8 ± 0.35$ suns$^{-1}$

Measured light-intensity dependence of V_{OC}

Convert light intensity ➔ generation rate

a-Si/c-Si heterojunction solar cell using heteroepitaxial silicon film
Define and fit ideality factor (n)

$$ n = \left[\frac{kT}{q} \frac{d \ln G_{avg}}{dV_{OC}} \right]^{-1} $$

$$ n(G_{avg}) = \frac{k_2 G_{avg}}{\sqrt{1 + k_2 G_{avg}} \sqrt{1 + k_2 G_{avg} - 1}} $$

$$ n\{k_2 G_{avg} \to 0\} = 2 $$

$$ n\{k_2 G_{avg} \to \infty\} = 1 $$

k_1 & k_2 are sufficient for quantifying recombination in absence of interface

$k_2 = 22.1 \text{ suns}^{-1}$ (fixed)
Defining activation energy from $V_{OC}(T)$ extrapolation

Linear extrapolation of $V_{OC}(T)$

$$ V_{OC}(T_R) = \frac{E_a}{q} + T_R \left. \frac{dV_{OC}}{dT} \right|_{T_R} $$

Substitute explicit dependence of V_{OC} on T

$$ V_{OC} = 2 \frac{kT}{q} \ln \left[k_i \left(\frac{\sqrt{1 + k_2 G_{avg}}}{n_i} \right) \right]. $$

Assuming $k_2 G_{avg} >> 1$ (negligible SCR, large fwd. bias):

$$ E_a = \frac{R_0^b E_g (T_R) + R_0^l n_{b,0} (T_R)}{R_0^b + R_0^l}. $$

Weighted mean of activation energies

Weights = strength of recombination

Extrapolated temperature dependence

$E_a \neq E_g$ linked to interface recombination

9/17/2015

Grover @ UNSW
Quantifying recombination in different regions

Light-intensity variation

\[\begin{align*}
 k_1 & \quad V_{OC}(T,G) \\
 k_2 & \quad C(V) \\
 E_a &
\end{align*} \]

\[R^b = 16\% \]

\[R^d = 46\% \]

\[R^I = 38\% \]

Extrapolated temperature dependence

At 1 sun

\[\Phi_{n,b,0}^q V_{OC} \]

\[E_{Fp} \]

\[E_{Fn} \]

\[E_g \]

\[qV_{OC} \]

\[p\text{-type (emitter)} \]

\[n\text{-type (absorber)} \]

\[k_1 = 3.36 \times 10^{14} \text{ cm}^{-3} \]

\[k_2 = 22.1 \text{ suns}^{-1} \]
Recombination analysis in CIGS cells with varying [Ga]

- Agreement of lifetime obtained from $V_{OC}(T,I)$ and TRPL
- Successfully tracks nuances of recombination variations based on material properties

Procedure for calculation of recombination rates
New equation for temperature coefficient of V_{OC}

\[
\frac{dV_{OC}}{dT} = -\frac{1}{T} \left[\frac{nE_g}{mq} - V_{OC} + \frac{\gamma n k T}{q} \right]
\]

- n – ideality factor; combines all recombination channels
- n/m – experimental fitting parameter

\[
\frac{dV_{OC}}{dT} = -\frac{1}{T} \left[\frac{E_g}{q} \left\{ 1 + \frac{\alpha T (T + 2 \beta)}{(T + \beta)^2} \right\} - V_{OC} + \frac{\gamma k T}{q} \left(2 - n \right) \frac{R_i}{R_0^i + R_0^b} \frac{\xi_i}{q} \right]
\]

- V_{OC}' depends on interface recombination and Fermi-pinning
- Smaller V_{OC}' for larger interface recombination → not necessarily good

Grover, 42nd PVSC, 2015
High [Ga] CIGS cells are interface limited

Rearrange terms to calculate interface contribution:

$$\frac{(2-n)R^i_0}{(R^i_0 + R^b_0)} \frac{\xi}{q} = T \frac{dV_{oc}}{dT} + \left[\frac{E_g}{q} - V_{oc} + \frac{\gamma kT}{q} \right]$$
Questions so far?
Operating Principle of Rectennas

- **Square-law rectification**
 - Signal strength smaller than diode switching voltage
 - 1 mV for 1 sun incident over 1 μm² and 100 Ω antenna

- **Key diode parameters**
 - Resistance \(R_D \), responsivity \(\beta_i \)
Operating range and industry impact

• Spectral range and applications

![Diagram showing spectral range and applications]

- Terahertz
- Infrared
- Visible

Detection
- Active and passive imager
- Interconnect receiver

Energy harvesting
- Solar
- Thermal

• Potential for high-efficiency low-cost
 - 90% efficient microwave rectennas exist
 - Large-signal: diode operates as switch

• Current state
 - IR detectors demonstrated (Q.E. \(\sim 0.01\% \) @ 10.6 \(\mu \)m)*
 - Solar cells proposed in 1972, no practical demonstration as yet

*Phiar Corp., NRO report 2002
Requirements for Efficient Rectennas

- Intrinsically fast diode
- Low R_D to match to R_A
- Low C_D to prevent shunting R_D
- High β_i for rectification
- Large V_A for high power-conversion efficiency
- Efficient antennas
Metal/Insulator/Metal Diode

• Mechanism
 – Tunneling across thin insulator
 ▪ Nonlinear $I(V)$
 ▪ Femtosecond fast

• Summary of work done
 – Fabrication
 ▪ Sputtered metals and insulators
 – Simulation
 ▪ Transfer matrix method
 – Modification
 ▪ Field effect transistor
 ▪ Double-insulator (MIIM) barrier design

Semiclassical Theory of Rectification in MIM

Photon-assisted transport applies when $\hbar \omega / e \sim$ voltage-scale of diode nonlinearity

DC I(V) under illumination:

$$I_{illum}(V_D, V_\omega) = \sum_{n=-\infty}^{\infty} J_n^2(\alpha) I_{dark}(V_D + n \frac{\hbar \omega}{e}); \quad \alpha = \frac{eV_\omega}{\hbar \omega}$$

Efficiency limit for monochromatic response of rectenna

- Assume ideal diode – high fwd/rev asymmetry
- 1 μW input (low intensity regime) – 1 photon process
- $|V_o| < \hbar \omega / q$, 1 photon/1 electron

$|V_o| < \hbar \omega / q$

$|V_o| = \hbar \omega / q$

$|V_o| > \hbar \omega / q$
Calculating broadband rectenna response for solar spectrum

Slide courtesy: Saumil Joshi, UC Boulder
Efficiency limit for rectifying solar radiation (quantum regime)

- 5700 K blackbody
- 1000 W/m²
- Spatial coherence area \(\sim 19 \, \mu m \)
- Maximum power \(\sim 1.1 \, \mu W \)
- Quantum operation
- Peak efficiency \(\sim 44\% \)
 - Matches Shockley-Queisser’s ultimate efficiency limit

Joshi, Moddel, Appl. Phys. Lett. 102, 083901 (2013)
Can we exceed the 44% limit?

- Microwave rectennas > 70%
- Use low energy photons?
- Three regimes
 - Quantum ($\alpha < 1$)
 - Transition ($\alpha \sim 1$)
 - Classical ($\alpha >> 1$)
- Increase diode voltage, relative to $\hbar \omega / q$
- Two ways to reach classical operating regime
 - High input intensity
 - High radiation resistance

$$\alpha = qV_D / \hbar \omega$$
Effect of input intensity on operating regime

Slide courtesy: Saumil Joshi, UC Boulder

- **Quantum regime**
 - Low intensity, high frequency
 - Frequency-dependent
 - Hump observed

- **Transition regime**
 - Higher intensity, multiple photons
 - Frequency-dependent
 - Multiple steps

- **Classical regime**
 - Very high intensity
 - Frequency independent
 - Large number of photons

Conclusion: efficiency limits of optical rectennas

Slide courtesy: Saumil Joshi, UC Boulder

- Quantum operation
 - Low intensity, high frequency - single photon process
 - Monochromatic efficiency → 100%
 - Broadband efficiency maximum = 44%
 - Split-spectrum > 44%

- (Quantum) classical operation
 - Possible at high frequencies through photon mixing → large voltage operation
 - Broadband efficiency > 44%

- Rectenna solar cell efficiency can exceed Shockley-Queisser limit
 - Through multi-photon process at high intensity

- Challenges
 - Coherence limits power
 - High diode resistance → large RC time-constant
 - Diode breakdown
Thank you.

Email: Sachit.Grover@firstsolar.com