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Sustainability of Electricity 
l  Increasing sustainability requires significant PhotoVoltaic 

generation capacity within a decade 
l  While PV has realized compound growth rates  > 40% for a 

decade, it presently accounts for <1% of electrical generating 
capacity 

l  Can PV reach TeraWatt production capacity in a decade – is 
there a Moore’s Law analog to PV? 

Need to redo fig 

�  All new US electricity needs met 
by PV – within 5 years 

�  New world electricity needs met 
by PV – within about 10 years 

�  US electricity needs met by PV – 
within 15 years 

� World electricity needs met by PV 
– within 20 years 

Example:	  40%	  growth	  rates	  
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Moore’s Law Analog for PV 
•  Integrated	  circuits	  have	  had	  a	  transforma4onal	  impact	  by	  increasing	  
performance,	  reducing	  costs	  and	  integra4ng	  electronic	  circuitry	  into	  a	  wide	  
range	  of	  systems,	  allowing	  rapid	  expansion	  in	  their	  use.	  

•  Moore’s	  Law	  expressed	  the	  sustained,	  rapid	  growth	  of	  transistor.	  
•  Staying	  on	  Moore’s	  Law	  requires	  focused,	  integrated	  projects	  coupled	  with	  
scien4fic	  and	  technological	  innova4on	  driven	  by	  a	  roadmap–	  e.g.,	  voltage	  
scaling,	  photolithography,	  high	  k-‐dielectrics,	  etc.	  
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QESST Approach 
l  Improve efficiency, manufacturability and $/kWh for silicon, thin 

film, and tandem solar cells 
l  Efficiency in a manufacturable process is key metric 

l  Develop advanced approaches which increase efficiency and are 
compatible with existing production 

l  Integrate with other components to increase functionality, 
performance and enable new applications. 
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II-VI ZnTe/ZnSe Thin Film Solar 
Cell Structures & Band 

Alignment 
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Heterojunction  
--- Band alignment at interface  

Energy conversion efficiency is the percentage of incident energy of sunlight or 
heat that actually ends up as electric power 

    
Carrier transport behavior at interface severely affects the device performance  

Suitable band offset at interface is critical for carrier transport  
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ZnTe-based Solar Cell 

A promising II-VI material for TFSC: 
  

Ø  Wide direct band gap  (EG>2 eV) 

Ø  Tunable bandgap via alloying  
 

Ø  Nontoxic materials 
 
Ø  Various growth techniques 

 
 
High diffusion voltage at ZnSe/ZnTe  
heterojunction, VOC > 1V is feasible  
 
      

F. Buch, et al, J. Appl. Phys., 48 (4), 1977 
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ZnTe-based Solar Cell 

A promising II-VI material for TFSC: 
  

Ø  Wide direct band gap  (EG 2.24 eV) 

Ø  Tunable bandgap via alloying  
 

Ø  Nontoxic materials 
 
Ø  Various growth techniques 

 
 
High diffusion voltage at ZnSe/ZnTe  
heterojunction, VOC > 1V is feasible  
 
      

 ZnSe/ZnTe thin film device structure 

Terminals 

Transparent  
Conducting  
Oxide (ITO) 

7059Borosilicate Glass 

            ZnSe 
Window Layer 

               ZnTe 
Absorber Layer 

F r o n t 
Contact 

Incident Light 

n(-) 

p(+) 
Metal/Graphite back contact 
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Film growth  
--- Close Space Sublimation/ Vapor transport	

Thin 
Film 

Source T 
 (°C) 

Sub T 
 (°C) 

Growth 
Rate 

 (nm/s) 

ZnSe 730 575 0.1 

ZnTe 670 575 2.5 

CSS growth 

Low cost --- No HV required 
Reliability  & Reproducibility  

Scalable (compatible to roll-roll 
processing) 

 

  

Device diagram of a CSS system 

Thermo   
couple 

 

Sub  CdS  CdTe CdCl2        Back  
Heat      Contact 

Completed Device Glass Substrate 
 

Vacuum Boundary 
 

Continuous Conveyor 
 

Air to Vacuum to 
Air Seal 
 

schematic of process 

Abound Solar (formerly known as AVA Solar)  
Production Prototype  
(National CdTe Team Meeting April 5 and 6, 2005 ) 
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SEM cross-section image 

 4 um ZnTe on ZnSe/ ITO/BSG glass 

ZnTe 
ZnSe 
ITO 

Energy-dispersive X-ray spectroscopy 
(EDS) confirmed the chemical composition 
of distinctive films. 
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Photoemission Spectroscopy 
EB = hv – EK – Φ 

/UV-light 

/UV-light 

http://en.wikipedia.org/wiki/File:ARPESgeneral.png  

Surface sensitive technique: 
Quantitative analysis of small chemical shifts  
depending on the chemical environment of 
the atom which is ionized, allowing  
chemical structure and chemical  
identification to be determined. 
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XPS Measurements on ZnSe Surface 
X-Ray photoelectron spectroscopy using Al-Kα source measured core level 
for ZnSe film surface, confirmed chemical compositions of the film surfaces.  
 
High-resolution surface science system PHI 5600 

 
 

Probed oxide on 
ZnSe surface 
Binding energy of 
Se 3d core level 
for Se2- in ZnSe is 
54.1eV as for Se4+ 
in SeO2 at 59eV 
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Surface oxide removed by sputtering 
or chemical etch  

 
Prior Treatment of XPS measurement 
•  Ar+ ion Sputtering  
•  Wet chemical etching 

•  40 % H2SO4 at 50 ºC 
•  1 % HCl RT  

could successfully remove the oxide. 
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As-deposited film

After 10 min Ar+ion sputtering

 40%H2SO4 at 50 degree C

ZnSe XPS Spectra  
Se 3d
Normalized to As-deposited 
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Elemental Se residual observed after 
etching--- Post annealing 

56 54 52 50 48 46 44

  
 Annealed at 150 degree C
 Etched by sulfuric acid
 Decomposed to elemental

           Se and ZnSe peak

Se 3d 3/2
ZnSe

 Se 3d 
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Elemental Se 3d 

Elemental Se is 
observed after etching; 
 
Same mild anneal in-
situ: inside the UHV 
photoemission chamber 
desorb it. 
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Fermi Level Alignment  
l  UPS measurement of Valence Band Maximum (VBM) at Au film 

surface  
 → Fermi Level 

l  Aligned with all the other VBM measurements 
l  Assume all Fermi levels are aligned 
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SSRL 8-1 01/07/2009

[-6.45+(-6.66)]/2= - 6.55 eV
Bias -4.96 eV
Au Fermi level= -1.59 eV
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UPS Measurements  
 

 Synchrotron radiation at Brookhaven National Laboratory and SSRL 

Valence band (VB) structures for ZnSe and ZnTe films 
Surface oxide altered valence band of ZnSe  

Extrapolation of the rising edges give the valence-band maximum: 
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Energy Band Diagram  
   & Device VOC and JSC 
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Energy Band Diagram  
   & Device VOC and JSC 

ZnSe 
Preparation Voc (mV) JSC(mA/cm2) 

None 450 <5 
Rapid transfer 

(<1 min) 600 ~5 
Chemical 

Etched 750 >5 

Solar cell parameters 
AM1.5 Illumination at 25°C  
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Direct measurement of CBM 
--- Inverse photoemission 
 Inverse photoemission is the time-reversed process of photoemission,  
 complementary technique to measure the conduction band edge directly. 

              
                 PE      EB = hv – EK                           IPE   E (above EF) = hv – EK  

http://www.physics.rutgers.edu/%7Ebart/grouphome/PE_IPE_RAB.htm 
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IPES Schematic Diagram 

Low energy electron  
gun (5-30 eV) 

Position sensitive MCP detector 
(Micro-channel plate detector ) 

Concave spherical diffraction grating  

Main blocks: UHV system / <10-7 Torr) 
• Source: electron gun   
• Diffraction grating  
• Position sensitive detector 
• Analysis programming 
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Thin Film Solar Cell Summary  
Ø  CSS & evaporation of sequential ZnSe/ZnTe growth demonstrated: 

   
Ø  Significant chemical oxidation and sensitivity to storage of ZnSe  

l  Oxidation state observed by  PES  
l  UPS using synchrotron radiation detected band structure offsets 

changed by oxidation 
l  Robust device baseline → minimize exposure of films to oxygen 
 

Ø  Film structure characterization: 
 Optimize CSS grown ZnSe film → diminish lateral facets 
 Refine the CSS equipment and enable better control of the ZnTe growth  
 Increase grain size of ZnSe and ZnTe in evaporation growth; 
 Recrystallization →post annealling 
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Roadmap for silicon devices 
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Dual-Junction “Limit” Results 
l  III-V/Si Device 

l  Unconstrained 
l  1.72eV/1.12eV 
l  42% Efficiency 

l  III-V/SiGe Device 
l  Lattice-matched 

l  1.58eV/0.84eV 
GaAsP/SiGe 

l  40% Efficiency 

GaInP/SiGe 
Lattice-Match 

GaAsP/SiGe 
Lattice-Match 
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GaAsP/SiGe Tandem Device 
Schmeider, Diaz, Barnett, Veeco, Amber Wave 
l  Improved TJs, Window layers, Integration (Martin, Brianna, ….) 

l  Voc as high as 1.32 V 
l  Efficiency as high as 15.2% (AR corrected) 
l  JSC-VOC FF = 78% 
l  Top cell ideality factor = 1.84 (Assumes n=1 in SiGe) 

l  Bottom cell not optimized (Xin, Dun, Anastasia, ….) 
l  Low bottom cell current—Ge:Si not optimized 

Si Substrate 

SiGe Graded Buffer 

SiGe Solar Cell 

III-V Nucleation 

GaAsP TJs 

GaInP BSF 

GaAsP Solar Cell 
GaInP Window 

GaAsP Contact 

Generation 3 

Solar Cell 

VOC = 1.30 V 

JSC = 12mA/cm2 

FF = 70.5% 

Efficiency = 11% 

1cm2 Device 
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Roadmap for silicon devices 
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Recombination Processes 
ð  Process where an electron & a hole annihilate 

ð  Both Carriers disappear - no collection!! 

ð  Recombination types 

v  Radiative  
v  Trap-Assisted  
v  Auger  
v  Surface 
v  Emitter 

- 

+ 
Photon 

CB 

VB 

BULK 

ð   How good are the surfaces?  

v   Minority carrier lifetime (µs or ms)  

v   Surface recombination velocity (S in cm/sec) W
S

beff

211
+=

ττ
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Moderate-to-high Temp. Techs.  
v  a-Si (PECVD at 200°C) 

v  SiN (PECVD at 200-350°C) 

v  SiO2 (Diff. Furnaces at 800-900°C) 

PECVD for a-Si & SiN SiO2 passivation 

ROOM Temp Techs. 
v      Hydrogen Fluoride (HF) 

v      Quinhydrone-Methanol (QHY/ME) 

v      Iodine-Methanol (I2/ME) 

Si Passivation Schemes 

QHY/ME passivation 

Surface recombination is controlled by growing a passivation 
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Why QHY-ME? 
ð  Easy to use 

ð  Low cost 

ð  Important characterization tool 

ð  Room temperature operation 

ð  Reversible 

ð  Ideal passivation if stable 

ð  QHY-ME = 0.01 mol/L 

ð  Wafer cleaning: Piranha & HF 

ð  Wafers in solution in acid resistant plastic bag   

ð  Passivation time - 1 hour at room temp 

ð  Measure lifetime/ Implied-Voc/ S 

Procedure 

Limitations 
Lifetime not stable if 
sample exposed to air 

QuinHYdrone/MEthanol Passivation 

O 

O 
p-benzoquinone  

OH 

OH 

hydroquinone  

+ 

Quinhydrone Structure 
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3.3 ms at 1x1015 

Lifetime Results (QHY/ME) 

Lifetime  
(IN solution) 

3.3 ms;  
7 cm/s 

Lifetime  
(20 mins OUT of solution) 

2.7 ms; 
8.7 cm/s 

1.1 ms at 1x1015 

p-type Si <100>, 3 ohm-cm, 170 µm 

Lifetime  
(IN solution) 

1.1 ms;  
21 cm/s 

Lifetime  
(20 mins OUT of solution) 

0.436 ms; 
53 cm/s 

Chhabra et al, Appl. Phys. Lett., 96 (2010) 063502  

n-type Si <100>, 100 ohm-cm, 460 µm 

(20 mins) 
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•  hydrocarbons 
•  metallic impurities 
•  silicon oxide layer 
•  ionic contamination 
•  particles 

 Alternative wet cleaning method: 
Hot H2O2 –H2SO4 solution (Piranha clean) 

 Cleans heavily contaminated Si wafers. 
Dilute HF/water solution. 

Premium RCA clean: 
 SC-1: NH4OH, H2O2 , and H2O at typically 80 C for 10 min 

 Removal of hydrocarbons and may cause oxidation and metal contamination.  
Immersion in HF in H2O at 25 C 

 Removal of oxide and the ions dissolved in the oxide. 
 SC-2:  HCl, H2O2 , and H2O at 80 C.  

 Removes the remaining metallic contamination. 
Final HF rinse to remove oxide. 
 

Hydrogen Passivation of Silicon 
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F. Tian, D. Yang, R. Opila and A. Teplyakov, Appl. Surf. Sci., 258, 3019-3026 (2012). 

a)  RCA method; 
b)  HF-dip method with a float 

zone crystal 
c)  HF-dip method with n-doped 

crystal.  

Infrared spectra of the Si-H stretching region 

 of H-terminated Si(111) surfaces 

RCA clean has better surface chemistry and morphology (AFM) 

Surface Preparation         Charge-carrier    Surface Recombination 
      Lifetime, τ (µs)    Velocity, S (cm s-1) 

 
RCA                   60.7+28.9                 1002.7+577.3 
HF-dip               169.9+14.0                 295.3+24.4 
 

But worse lifetimes!! 
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Chemical	  and	  electrical	  passiva:on	  	  
	  of	  Si(111)	  surfaces	  

F. Tian, D. Yang, R. Opila and A. Teplyakov, Appl. Surf. Sci., 258, 3019-3026 (2012). 

IR investigation of the C-H 
stretching spectral region of the  
1-decene modified Si (111) surface 
produced by a) RCA method and b) 
HF-dip procedure.  

IR investigation of the C-H 
stretching spectral region of the  
1-octadecene modified Si (111) 
surface produced by a) RCA 
method and b) HF-dip procedure. 
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XPS Studies Si substrates 
after QYH/Me 

Chhabra et al, Phys. Status Solidi A, DOI: 10.1002/pssa.201026101  
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Recombination center 
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Surface passivation of Si with hydroquinone 
l  Increases carrier lifetime dramatically. 
l  Slows oxidation rate compared to Hydrogen passivation 
l  How 

l  What reaction? 
l  Density functional theory says BQ will not react with H-terminated 

Si, but will react with Si(111)7x7.  What defects are important? (D. 
Okeeva) 

l  BQ is photoactive—is light from Sinton test important in observed 
passivity? (L. Costello, M. Chen) 

l  Are protons in MeOH important in passivity (L. Costello)? 

l  Is passivating site a charge center? 
l  Can we generalize it? 

l  How do we make organic/Si induced junctions (N. Kotulak, ASU) 
l  Can organic passivation of Si nanowires be improved (Cal Tech) 
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Surface Photovoltage 
with Prof. Sefik Suzer, Bilkent University 

n-‐Si

Si	  2p

n-‐Si/SiOx

p-‐Si

Si	  2p
O	  1s

Si4+
Si0

Laser	  ON

p-‐Si/SiOx

Laser	  
OFF

Time

106 104 102 100 538 536 534 532 530

-‐0.19	  eV

0.18	  eV

102 100 98

+0.11	  eV

Can induce shifts in surface potential (binding energy) by up to 0.5 eV with laser 

•  Can this induce changes in contact angle? 

•  Different surface chemistry (redox chemistry)? 
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Lifetime tester, data 
Kotulak, Costello, Chen 
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