

## Solution Synthesis of Nanoparticles and Quantum Dots

**Never Stand Still** 

Richard Tilley School of Chemistry, Mark Wainwright Analytical Centre, Australian Centre for NanoMedicine

### Nanoparticles Synthesis

Magnetic
 Fe, Fe<sub>3</sub>O<sub>4</sub>, Fe<sub>3</sub>S<sub>4</sub>

- Metals,
   Pd@Au, Au@Pd,
   Ru, Pt, Pd, Ni
- Quantum dots,
   IV Si and Ge,
   IV-VI SnS, SnTe



## Two methods we make particles in solution

Decomposition

 $\begin{array}{ccc} \text{heat} \\ \text{Fe precursor} & \rightarrow & \text{Fe} \end{array}$ 

Fisher Porter bottle - 1 hour to 3 days (hot injection in seconds)

Surfactant  $\rightarrow$  size and shape control.







### Silicon and Germanium Quantum Dots



### **Properties of Quantum dots**

- Sharper emission spectra  $\rightarrow$  Purer colours.
- Stability.
- Size selective emission

Applications

Physical - displays
 Biological - imaging





Properties of Silicon nanoparticles

- Are CdSe particles toxic? (Nano Lett.,4, 2004, 11 Derfus et al).
- Si and Ge nanoparticles as an alternative.
- Less-toxic & environmentally friendly.





### Silicon quantum dots





Low toxicity

 Si dots and HeLa cells (with Kenji Yamamoto International Medical Center Japan).
 R. D. Tilley and K. Yamamoto, *Adv. Mater.*, 18, 2053 (2006). Micelle synthesis of Si and Ge nanocrystals

◆SiCl<sub>4</sub> or GeCl<sub>4</sub> + LiAlH<sub>4</sub>, Si(IV) → Si(0). ◆Use Glove Box -  $O_2$  and H<sub>2</sub>O free synthesis - silica SiO<sub>2</sub> formation.



J. H. Warner, A. Hoshino, K. Yamamoto, R. D. Tilley Agnew. Chem. Int. Ed. 2005, 44, 4550-4554.

### Quantum Dots



A. Shiohara, S. Prabakar, A. Faramus, C-Y. Hsu, P-S Lai, P. T. Northcote, R. D. Tilley *Nanoscale*, 3, 3364-3370 (2011).



# Purification

- Before After •Bohr radius about 4 nm Size selective column chromatography
  - A. Shiohara, S. Prabakar, A. Faramus, C-Y. Hsu, P-S Lai, P. T. Nonhcote, R. D. Tilley Nanoscale, 3, 3364-3370 (2011).

### Problem for Oxygen containing species



A. Shiohara, S. Prabakar, S Hanada, K Fujioka, K Yamamoto, R<sub>1</sub> Northcore R Tilley *s JACS*, 132, 248–253 (2010).

### PL allylamine particles



- Bohr radius about 4 nm.
- 480nm emission peak Vial of silicon nanocrystals.
  - Quantum yield 10 %

12

### **Surface matters**



With, Jonathan G. C. Veinot and Susan M. Kauzlarich, ACS Nano, 2676–2685, 2013



## Si QDs with Mn Ni and Cu Doping

• Dopant level at 1 % relative to Si



## Doped Si QDs

- Mn and Ni doped Si QDs PL
  - Si (443 nm)
  - Mn:Si (475 nm)
  - Ni:Si (485 nm)
  - Redshift ~ 50 nm





B. F. P. McVey and co-workers *Journal of Physical Chemistry Letters*, *6*, 1573-1576 (2015).



#### **Optical properties of metal doped Si NCs**





### **Germanium Quantum Dots**

LiAlH<sub>4</sub>
LiBH<sub>4</sub>
LiBEt<sub>3</sub>H
NaBH<sub>4</sub>



S. Prabakar, A. Shiohara, S Hanada, K Fujioka, K Yamamoto, **R7**D Tilley *Chem. Mater.*, 22, 482–486 (2010).

### **Germanium Quantum Dots**



S. Prabakar and coworkers Chem. Mater, 22, 482–486 (2010).

### Silicon and Germanium Nanocrystals (Si and Ge NCs)

- Unique Optical Properties
- Low Toxicity
- Low quantum yields 10%.



M. Dasog, G. B. De Los Reyes, L. V. Titova, F. A. Hergmann, J. G. C. Veinot *ACS Nano* 2014, *8*, 9636-9648 D. A. Ruddy, J. C. Johnson, E. R. Smith, N. R. Neale *ACS Nano* 2010, *47*, 7459-7465.



# SnS Quantum dots

## SnS,

- SnBr<sub>2</sub> and Na<sub>2</sub>S
- With ethanolamines

   3 hydroxyl groups
   2 hydroxyl groups
   1 hydroxyl group





### 3 hydroxyl groups

### 2 hydroxyl groups

### 1 hydroxyl group



X. Ying, C. W. Bumby, N. Al-Salim and R. D. Tilley JACS 131, 15990 (2009).

SnS

 For indirect band gap semiconductor

### absorption coefficient $\alpha^{0.5}$ $\propto$ photon energy h<sub>U</sub>



# CZTS Quantum dots

### Cu<sub>2</sub>ZnSnS<sub>4</sub> NCs (CZTS NCs)

• Earth abundent



- W. Wang, M. T. Winkler, O. Gunawan, T. K. Todorov, Y. Zhu, D. B. Mitzi Adv. Energy Mater. 2014, 4, 1-5.
- X. Yu, A. Shavel, X. An, Z. Luo, M. Ibanez, A. Cabot J. Am. Chem. Soc. 2014, 9239











### **CZTS NCs**





### **Optical Properties of CZTS NCs**

Tune composition and optical properties Collaboration





# Other materials

### Magnetic Iron particles



S. Cheong, P. Ferguson and coworkers, *Angew. Chem. Int. Ed.* 50, 4206–4209 (2011).

- Why iron?
- Low toxicity
- Stronger magnetism.



**WILEY-VCH** 



- •With Prof. Chen-Sheng Yeh (NCKU, Taiwan)
- Contrast twice of iron oxide control r<sub>2</sub> of 324 mM<sup>-1</sup> s<sup>-1</sup>

32

- •Contrast in liver 1/3 of clinical dose. 2mm tumours.
- •Scale up

S. Cheong, P. Ferguson and others, Angew. Chem. Int. Ed. 2011, 50, 4206-4209.

### Ni cubes

- Trioctylphosphine
   + 1 bar H<sub>2</sub>
- Stabilizes {100}
   faces



A. P. LaGrow, and coworkers JACS, 134, 855-858 (2012).

### Shape control of Ni



A. P. LaGrow, and coworkers Advanced Materials, 25, 1552-1556, 2014



#### **Pd nanocrystals - Growth Mechanism**



J. Watt et. al. Adv. Mater., 21, 2288 (2009).







S. Cheong et. al JACS, 131, 14590 (2000).



## Ruthenium

- Substitute oleylamine with dodecylamine
- Hourglass shape
- Predictive?!









### Ruthenium

- Straight chain amine
- Packs better on surface
- Dr Shery Chang (monash)



John Watt, Chenlong Yu.... JACS, 135, 606-60<sup>3</sup>,(2013).

- Au core Pd shell
- Same size sub 15 nm
- Same shape
- Same composition
- EDS/EDAX mapping
- HAADF
- Prof Angus Kirkland Dr Yoshihiko Takeda



A. Henning and coworkers Angew. Chem. Int. Ed., 52, 1477–1480 (2013).



Oxidation of benzyl alcohol to benzaldehye (Don't want toluene) Max activity at 2.2 nm shell ( about 10 layers) 95% selectivity With stuart taylor (cardiff)

40

A. Henning and coworkers Angew. Chem. Int. Ed., 52, 1477–1489

## PdAu heterostructures



A.McGrath and coworkers, submitted

# Au on Pd Hyperthermia therapy



1. R. Weissleder, Nat. Biotech., 2001, 19, pp 316-317

- Branched gold structures?
- Local heating of tumour tissue (>45 °C)
- Laser light transmittable through human tissue in near-infrared (NIR)
- Can be absorbed by nanomaterials, converted to heat

## Near-infrared (NIR) absorbance



Increasing absorbance at  $\lambda = 808 \text{ nm}$ with [Au]

# Hyperthermia



With Prof. Chen-Sheng Yeh and Dr. Yi-Hsin Chien (National Cheng Kung University, Taiwan) 3.0 2.5 2.5 2.0 1.5 1.5 1.0 0.5 0 2 4 6 8Time post treatment (days)



PBS + Laser (3 W cm<sup>-2</sup>, 30 min) PdAu + Laser (3 W cm2, 30 min)

### **Bi-metallic**

- fcc Pd core hcp Ru arms
- Build 3-D structures



X Chan and coworkers submitted 🛃 💭

### Au core Ru arms

- Au core Ru arms
- Different mechanism
- Amanda Barnard CSIRO





## EMU

## Funding: MacDiarmid Institute Ministry of Business and Innovation Collaborators

