

Cost analysis of current PV production and strategy for future silicon PV modules

Pierre Verlinden, Zhang YingBin and Feng ZhiQiang

Presentation to UNSW January 22nd, 2014

1. Trina Solar: A Global Solar Player

- 2. Where is the PV Industry going?
- 3. Cost Reduction Analysis
- 4. Future Challenges
- 5. Opportunities and Strategies
- 6. Sustainability
- 7. Conclusions

Company Snapshot

- Founded in 1997, in Changzhou, China
- \$2,048 million 2011 net revenue²
- 22 offices worldwide

Smart Energy Together

- Listed on the NYSE: TSL NYSE
- World's largest PV manufacturing campus²
- Over 7.5 GW shipped since 2007³

1. Geographical breakdown, based on country record of sales, not end installation. Data as of Dec 31, 2012

1. Trina Solar: A Global Solar Player

2. Where is the PV Industry going?

- 3. Cost Reduction Analysis
- 4. Future Challenges
- 5. Opportunities and Strategies
- 6. Sustainability
- 7. Conclusions

_	

A Steady Growth ...

TeraWatt/year by 2025 +/- 5?

Various sources: Paul Maycock's PV News, Photon International, Navigant

Industry History

What are the conditions required for PV to reach adulthood?

5 Conditions Required for PV to reach "adulthood"

- 1. Cash-flow Sustainability
 - Profitable and generate enough cash for growth
- 2. Subsidization-free market
 - PV must become a "no-brainer" (an obvious choice) even without subsidies
- 3. Material Sustainability
 - No material supply issue up to TW/year level
- 4. Energy Sustainability
 - PV must have a positive impact on the reduction of fossil fuel consumption
- 5. Grid-management Sustainability
 - PV must become a "Voltage source", as well as a "Power source", in a smart grid environment, with efficient storage

Learning Curve Model

- Every manufactured product exhibits a reduction in cost following a learning curve model
- > q is <u>cumulative production</u>
- "learning by doing"

Progress Ratio

 $PR = 2^{-b}$

Learning Rate

```
LR = (1 - PR)
```


1975-2012 Module Prices (\$2011)

Various sources: Paul Maycock's PV News, Photon International, Robert Johnson, Paula Mints, Navigant, Bloomberg New Energy Finance

- 1. Trina Solar: A Global Solar Player
- 2. Where is the PV Industry going?
- 3. Cost Reduction Analysis
- 4. Future Challenges
- 5. Opportunities and Strategies
- 6. Sustainability
- 7. Conclusions

Price, Cost and Cumulative Production

• Between 2008 and 2012, the price of PV modules has plummeted. But what really happened to the cost of manufacturing?

Year	ASP (2011US\$)	Cumulative Production (GW)	Cost from Learning Curve Model	Real Cost
Begin. 2008	4.0	13.0	100%	100%
End 2012	0.73	150.3	46.7%	?
Δ=5 years	-81.75%	Ratio = 11.56	-53.3%	

$$C_t = C_0 \left(\frac{q_t}{q_0}\right)^{-b}$$

with *b* = -0.311

Manufacturing Cost of Multi-Crystalline Si PV Modules

Major Material Cost 2012 compared to 2008

Major Material Cost 2012 compared to 2008

Wafering

Cost Ratio 2012/2008

Cell Processing

Cost Ratio 2012/2008

Major Material Cost 2012 compared to 2008

Module

Cost Ratio 2012/2008

Other Major Costs: 2012 compared to 2008

- 1. Trina Solar: A Global Solar Player
- 2. Where is the PV Industry going?
- 3. Cost Reduction Analysis

4. Future Challenges

- 5. Opportunities and Strategies
- 6. Sustainability
- 7. Conclusions

1. Increase EBITDA to be able to invest for growth

$$Growth \leq \frac{ASP}{ACB} \times EBITDA(\%)$$

2. Energy Pay-Back Time (EPBT)

*ASP = Average Sales Price ACB = Average Cost to Build EPBT = Energy Pay-Back Time EBITDA = Earning Before Interest, Tax, Depreciation and Amortization

Material Sustainability: Silver Production and Usage

Historical Price of Silver

➢At US\$45 per ounce, the cost of Silver in PV represents US\$0.035 to 0.049/W

Yearly chart of silver price (2000 - 2013)

- 1. Trina Solar: A Global Solar Player
- 2. Where is the PV Industry going?
- 3. Cost Reduction Analysis
- 4. Future Challenges
- 5. Opportunities and Strategies
- 6. Sustainability
- 7. Conclusions

Decision Factors: Quality and LCOE

Customer decisions will now be based on two main factors:

- 1. Product Reliability
- 2. <u>Levelized Cost of Electricity</u> (LCOE)

TOTAL COST

PRODUCED ENERGY

Impacted by:

- a) Cost of installation, Interest rate, Operation and Maintenance, ...
- b) Energy Production Rate, Energy Rating kWh/(kWh/m²) or Energy efficiency Temperature coefficients, Low-Irradiance efficiency, etc.
- c) Annual performance degradation and hardware lifetime

INDUSTRY STRATEGY MOVING FORWARD

- 1. Improve Product Quality
- 2. Innovations to reduce LCOE

LCOE is the only Value for the customer

Cost of overall PV System

PV Modules + Inverter ~ 1/3 of total cost
Except for DC, AC breakers and interconnection cost, the rest of BOS cost is proportional to area, and is highly dependent on efficiency.
PV System Cost (US\$/W)

Levelized Cost Of Electricity (LCOE)

- Target of US\$0.06/kWh places PV in the same league as bulk electricity production by gas-fired power plants
- The easiest way to reach this target is by improving the efficiency while we keep reducing manufacturing cost
- Even temporary cost increase combined with efficiency improvement reduces LCOE

Levelized Cost of Electricity - What is the cost of reliability?

How to combine High-Reliability and Low LCOE?

- Reliability is expensive. PV companies cannot offer the highest quality module at the lowest cost for every part of the world.
- Cost reduction may have an impact on reliability or quality.
- But the PV industry can:
 - Offer a <u>highly reliable product</u> that is adapted to a <u>particular climate</u>,
 - Design a cell that has a better <u>energy efficiency</u> at a typical irradiance,
 - Optimize reliability and the energy production rate for each typical climate,
 - Focus on reduction of LCOE instead of \$/Watt

Educate

Irradiance profile for 4 different climates

- Total Irradiation
 - Temperate (Berlin) 1130 kWh/m²
 - Desert (Alice Springs) 2420 kWh/m²
 - Tropical (Singapore) 1625 kWh/m²
 - Mountain (Lhasa) 2370 kWh/m²

Definition of Particular Climates

Smart PV: a way to reduce LCOE with Power Optimizer

TOTAL COST

PRODUCED ENERGY

Active Energy Management

Enhanced Commissioning Predictive Failure Analysis Panel-Level Monitoring

Power Optimization

MPPT per Panel3.2% more energy on day 1Mitigate system agingImproved Roof Utilization

Module Integrated

Smart-Curve Technology Located within J-box

Safety

Module level off-switch Fire safety Arc-fault detection Theft prevention

0

Up to 20% Additional Energy

20.54% Mono-Si Solar cell in Pilot Production

Smart Energy Together

9.3460 [A] Isc	8.816 [A] Impp	998.9 [W/m²] Irradiance (Isc)
0.6618 [V] Uoc	0.5570 [V] Umpp	24.60 [°C] T Monitor Cel
20,543 [%] Eta	4,911 [W] Pmpp	25,0000 [°C] T Cell
79.39 [%] FF		
9.346 [A] [vld1		
0.0100 IVI Uvld1	0.093 [W] Pvld1	

Double Glass : The Most Durable Module

More Reliable Performance

- No PID
- Less degradation after Thermal Cycling, Humidity Freeze, Damp Heat

More Durable

- No "snail tracks"
- No delamination or degradation of backsheet
- No yellowing

Faster, Lower-cost of Installation

- Frameless modules do not require grounding, leading to faster installation and lower component and labor costs
- Less soiling

Sleek, Clean Appearance

- Frameless design for more seamless array appearance

Greater Inventory Flexibility

- Certified to 1000V for both UL and IEC

Enhanced Safety

- UL and IEC Fire Class A certified

Electrical and Mechanical Characteristics

- •PMAX 240-255W •15.1% efficiency
- •60 cells
- •IEC1000V, UL1000V Dual Rated

- 1. Trina Solar: A Global Solar Player
- 2. Where is the PV Industry going?
- 3. Cost Reduction Analysis
- 4. Future Challenges
- 5. Opportunities and Strategies

6. Sustainability

7. Conclusions

Low Carbon Footprint and Short Energy Pay-back Time

- The <u>British Standards Institution (BSI)</u> verified Trina's low carbon footprint of 781.8kg per KW produced for the entire module manufacturing process from raw material acquisition to packaging as environmentally friendly according to PAS 2050 and ISO 14067 standards
- Over 25 years of operation, that is less than 19g of CO₂ per kWh (Assuming 1600 kWh/kW/year in sunny area)

- 1. Trina Solar: A Global Solar Player
- 2. Where is the PV Industry going?
- 3. Cost Reduction Analysis
- 4. Future Challenges
- 5. Opportunities and Strategies
- 6. Sustainability

7. Conclusions

- 1. The "Great Price Decline" of PV is over. Recovery will take time.
- 2. Between 2008 and 2012, ASP has dropped by 81.75%, while manufacturing cost has dropped by 70.1%, mostly driven by Si price. Non-Si Cost has dropped by 48.4% only. Learning Curve Model predicted a Cost reduction by 53.3%.
- Major Cost reductions have been achieved in some areas: Silicon feedstock, casting, wafering, Back-side electrode (Al and Ag)
- 4. Minor Cost reductions have been achieved in: Cell Processing and Module Assembly
- 5. Cost increases have been observed in: Labour and Front Ag

Conclusions (2)

- 6. Challenges for the PV Industry:
 - Regain Profitability and Increase Gross Margin
 - Sustainable Growth
 - Enough Gross Margin to grow
 - Low EPBT
 - Develop Ag-free cell process to avoid the next Supply Constrained Market
- 7. Opportunities
 - Focus on Reliability and LCOE
 - Develop highly <u>reliable</u> products with high <u>Energy</u> performance for particular climates and particular regions
- 8. Reducing the Energy Payback Time and Carbon footprint are key to a sustainable PV industry

