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Setting the Scene

1. UQ owns and operates ~ 5.6 MW of solar energy plant: more than any other
university in the world

2. UQ has a comprehensive portfolio (>$50M) of clean energy research spanning:
fundamental PV science; fundamental battery materials development; power systems
engineering and integration; pilot deployment of PV and CST;, CST turbine
development; biofuels for transport and fine chemicals; energy economics; socio-
economics and policy development; resource monitoring and prediction; energy
poverty and off-grid systems design; hybrid plant design.

Molecules to Megawatts (and most things in between)
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UQ Solar: An Attempt to Co-ordinate and Communicate Strategic Intent
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Sustainable Advanced Materials @ COPE
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Accurate

Foci: Models
1. Solar cells & photodiodes

Bioelectronics

Fundamentals ! Australian Government

2.
3. Organic sensors
4

Light emitting structures ~EilE

-Modelling (mesoscopic)
-Quantum Chemistry
-Transport
-Optics

Philosophy:

1. Integrated, multi-disciplinary

2. Molecule to prototype

3. Real world problems

5. Commercialisation & incubation

Er S Australian Research Council


http://www.csiro.au/

Our Interests (Next Gen Thin Film Solar Cells)

Electro-optics of photoactive diodes and materials

Lin et al. Nature Photonics, 9 106 (2015);
Armin et al. ACS Photonics, 1 173 (2014);
Armin et al. Nature Materials, 12(7) 593 (2013);
Lee et al. Advanced Materials, 23 766 (2011)

e Transport physics of disordered semiconductors

Stolterfoht et al. Nature Communications, In Press (2016);
Lin et. al. Account of Chemical Research, 49(3) 545 (2016);
Stolterfoht et al. Scientific Reports, 5 1 (2015);

Philippa et al. Scientific Reports, 4 5695 (2014);

Armin et al. Advanced Energy Materials, 4(4) 1300954 (2014)

Scaling physics: commercially viable solar cells

Armin et al. Advanced Energy Materials, 5 1401221 (2015);
Jin et al. Advanced Materials, 24(19) 2572 (2011)
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Different Types of Thin Film Solar Cells?

(3)  Bulk inorganic p-n junction (b) Organic D/A solar cell (c) Schottky photodiode
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Thin Film Organic Solar Cell: Really Simple Architectures

(A) Bilayer Device (B) Bulk heterojunction Device
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--- Hole blocking layer
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Organic Semiconductors (n-and-p-type): Excitonic at RT
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Organic Photodiode or Solar Cell: Basic Mode of Action

Transparent Electrode

Important:
-Static dielectric constant < 5
-Excitonic (~0.2-0.5eV E;)
-Molecular junction
-Transport physics “hopping’

)

’ - < 10 cm?/Vs
® -Recombination bimolecular

Load

~100-1000 nm

Also Important:

-Power conversion efficiencies > 12%
-Must be encapsulated (O, and H,0)
-As yet, have not been scaled (modules)
n-type J -Physics is really interesting

-Closest to artificial photosynthesis?

Metal Electrode

Fan et al. Advanced Energy Materials, 3(1) 54 (2013);
Lee et al. Advanced Materials, 23 766 (2011)



Electro-optics

 Optical field distribution (thin-film, low finesse cavity)
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Junction Thickness — Optical Field Effects

(b BHJ layer
80 ( ) thickness
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THE UNIVERSITY Armin et al. ACS Photonics, 1 173 (2014);
N## OF QUEENSLAND Armin et al. Nature Materials 12(7) 593 (2013)
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Charge Generation and Transport

Slower carrier mobility [cm?V-"s™]
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Slower carrier controls:

- Recombination and extraction efficiency; AND
- Charge generation yield due to an entropic driving force.

Stolterfoht et al. Nature Communications, In Press (2016)

Efficiency



“Big” Organic Solar Cells
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Relevant Scaling Physics:

Defect density scales exponentially with active area;
Transparent anode sheet resistance limits collection path;

- Ry, impacts recombination coefficient and deviation current.
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Model Planar (CH;NH;Pbl;) Solar Cell
“it does not get any simpler than this”

® n-type interlayer

. Organohalide Perovskite Homojunction
_ p-type interlayer

O Pb
o |
' AD{ CH3NH3*

Perovskite: ABX,
e.g. CaTiO,

p-and-n type interlayers ~ 10 nm: not transport layers but work function modifiers
“Metal-Insulator-Metal homojunction”
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Internal quantum efficiency (IQE)
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Predominantly Non-excitonic Branching Fraction at RT?
(low frequency €’ and optical frequency n,k)
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n, k data available at: http://www.physics.uqg.edu.au/cope/
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nature
PUBLISHED ONLINE: 15 JUNE 2015 | DOI: 10.1038/NPHYS3357 phySIC S

ARTICLES

Direct measurement of the exciton binding energy
and effective masses for charge carriers in
organic-inorganic tri-halide perovskites

Atsuhiko Miyata'’, Anatolie Mitioglu'’, Paulina Plochocka’, Oliver Portugall’, Jacob Tse-Wei Wang?,
Samuel D. Stranks?, Henry J. Snaith? and Robin J. Nicholas®*

Solar cells based on the organic-inorganic tri-halide perovskite family of materials have shown significant progress recently,
offering the prospect of low-cost solar energy from devices that are very simple to process. Fundamental to understanding the
operation of these devices is the exciton binding energy, which has proved both difficult to measure directly and controversial.
We demonstrate that by using very high magnetic fields it is possible to make an accurate and direct spectroscopic
measurement of the exciton binding energy, which we find to be only 16 meV at low temperatures, over three times smaller
than has been previously assumed. In the room-temperature phase we show that the binding energy falls to even smaller
values of only a few millielectronvolts, which explains their excellent device performance as being due to spontaneous free-
carrier generation following light absorption. Additionally, we determine the excitonic reduced effective mass to be 0.104m,
(where m. is the electron mass), significantly smaller than previously estimated experimentally but in good agreement with
recent calculations. Our work provides crucial information about the photophysics of these materials, which will in turn allow
improved optoelectronic device operation and better understanding of their electronic properties.

“Irrespective of the exact value, such a low Eg (C.f. Si: 15.0 meV;
GaAs: 4.2 meV,; CdTe: 10.5 meV) dictates that perovskite solar
cells should be predominantly non-excitonic at room temperature”

1.7meV < Eg < 2.1 meV
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Thin Film Electro-Optics (Again)
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Experiment versus Model
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The Optimised Outcome

Glass/ITO (80 nm)/PEDOT:PSS (15 nm)/ PCDTBT (5 nm)/Junction (370 nm)/PC60BM (10 nm) /Ag (100 nm)

20
| Jsc=21.9 mA/cm”
10- - = = Dark Voc=1.05V
- | ——— 1 Sun : FF=0.72
N , PCE=16.5%
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1
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-1.0 -0.5 0.0 0.5 1.0
Jse (MAJcm?) Voe (V) FF PCE (%)
180 nm 15.1+0.6 1.05+0.00 0.74+0.06 11.2+0.7
260 nm 18.2+0.4 1.04+0.01 0.69+0.03 13.1+0.6
340 nm 19.4+0.5 1.05+0.01 0.73+0.02 14.6+0.4
370 nm 20.7+£0.8 1.05+0.01 0.71+0.02 15.2+1.1
430 nm 17.9+0.4 1.05+0.01 0.73+0.03 13.7+0.4
520 nm 17.5+0.5 1.03+0.01 0.61+0.04 10.9+1.1

. Hysteresis Free & V,_dependent upon electrode work function offset
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Scaling ......
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A Culture Changing Project: The UQ MW Array

(http://www.uq.edu.au/solarenergy/index.html )

s s B
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Key Statistics:

-9.3 GW hr in 56 months;
-17.8% Capacity Factor;
-8.9MKg of CO, mitigated;
-> 1500 visitors;

-~ $1.2M in savings;
-On-track for 8-10 year payback;
-Big research potential;
-Data being used by industry,
government and research
organisations;

SYSTEMS THINKING -Still the largest roof-top PV
system in AU!
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http://www.uq.edu.au/solarenergy/index.html
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Gatton Solar Research Facility (PC February 2015: 5.33 GWh to 13" February 2016)

- 3.275MW (630kW SAT; 630kW DAT; 2.015 FA) ~37,000 CdTe First Solar Panels

- Research Building, Visitor Centre, Data Hub and Servers

- 600kW, 760kWh Kokam Lithium Polymer Battery

- Bespoke Central Supervisory System with Integrated Battery Management Systems

e
2
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http://solar-energy.uq.edu.au/
http://solar-energy.uq.edu.au/
http://solar-energy.uq.edu.au/

PV Array Performance
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BESS System Specification

Connected To UQ
Gatton Campus |11 kV

Substation
1 MVA
= 600 kW, 760 kWh Lithium Polymer BESS Transformer
= 576~748 V DC 0.4 kV
" Interfaced by 4x300 kVA VACON Inverters with T T T~ P
N
415V, 3 ph AC output K N N
\ \
= Capable of sourcing/sinking reactive power at AV ., \l/ av AR
0.9 power factor ‘\ — — /’\ — = /’
\ RN /
N - yd - P J/
T Inverters T
Bank 1 Bank 2
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Battery Research Agenda

3500 ;

I T T
How do we store — Demand  — PV How do we deal
3000 -excess PV energy? \, -~ 3~ N with fluctuation/ -
/ \/ intermittency
2500 | issues using BESS? -

‘While BESS is
charged and
1000 discharged, how is
its capacity and
‘cycle-life
affected? | | |

0 200 400 600 800 1000 1200 1400
Minutes in a day from 00:00 hour

-

How do we shave/
shift load using -
stored energy?

How can we best
utilise BESS as a
critical asset?

UQ Gatton Campus PV and Load
(o))
8

Demand [kW], 21% Sep 2015

0
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A Few Take Home Messages

1. UQ Solar Power research agenda broadly spans PV, CST, molecules to MW, panel
to policy

2. UQ philosophy of ‘learning through doing’ led to 5.6 MW under ownership and
operations — a university as a power company with a change in philosophy

3. Systems understanding informs all aspects of our agenda — next generation
materials and cell design through to power systems and markets

4. This approach drives impact and allows a wide stakeholder base to be engaged

5. QRET Issues Paper released yesterday — viable pathway to a 50% target for QLD
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The Team — Across the Discipline Divides

e COPE: Ardalan Armin, Vincent Lin, Martin Stolterfoht, Helen Jin, Mike Hambsch, Paul Burn

e UQSolar (& GCI): Jan Alam, Ruifeng Yan, Craig Froome, Vince Garrone, John Foster, Lynette Molyneaux, Liam
Wagner (Griffith), Phil Wild, Tapan Saha, Shane Goodwin, Gemma Clayton, Ove Hoegh-Guldberg

e P&F and Gatton PCG
—  Geoff Dennis (QUT), Adrian Mengede, Steve Ingram, Andrew Wilson, Carlos Dimas, Gatton Community

e Partners
— Trina
—  AGL &First Solar
—  Hutchins & McNab
—  MPower
—  Provecta
—  Department of Education (Canberra)
— ARENA, QLD State Government

.n
%bal Change Institute
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Exciton binding energy — low frequency or optical ’?

4

Solution to the Wannier (Mott) t] E, = 1 __mee
olution to the vwannier (0] equation. = —
A 5 my e? 2(4meyh)?

Real part of dielectric constant screens the electric field — via the polarisation of
the lattice (excitation of optical phonons) or polarisation of valence electrons: for

CH;NH;Pbl; exciton separation >> lattice constant and static € must be used.

4mlhte?ed

[Roth et al. Phys. Rev. 114, 90-103 (1959)]

Co~ 1.35x 10 eV/T?t0 2.7 x 10® eV/T? [Tanaka et al. Solid State Commun. 127, 619-623 (2003)]

1.7meV < Eg < 2.1 meV

[D'Innocenzo et al. Nature Commun. 5, 3586 (2014): ~ 50 meV]
B e ey [Frost et al. Nano Lett. 14, 2584-2590 (2014): < 1meV]
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n-and-p-type electrode interlayers
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Energy (eV)

Electrode interlayers
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http://www.csiro.au/

3. Electrode work function difference influences V_

100 I I 1 I T I 5 T T T T T
80" 1 %8 B gneesme e ammseee g
S . —=—PCDTBT
— < ' ——DPP-DTT
X 607 1 = 51 | ——p3HT
. = | —e—PCPDTBT
L 40 —=— PCDTBT 1 8101 |
! | ——DPP-DTT | = |
201 == PELl 1 @ .45]
—«— PCPDTBT 5 ,
o :
9300 400 500 600 700 800  --02 00 02 04 06 08 10
Wavelength (nm) Voltage (V)
Jsc (MAJcm?) Voo (V) FF PCE (%)
PCDTBT 15.9+0.7 1.03.£0.01 0.66+0.05 10.9+0.8
DPP-DTT" 13.3 1.00 0.74 9.8
P3HT 14.2+0.9 0.70+0.10 0.78+0.03 8.5+0.8
PCPDTBT 13.0+£0.8 0.88+0.06 0.69+0.04 7.8+£0.8
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Hysteresis: interfacial phenomenon?
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AL

Cell & Bank Configuration

Cells r/

1. Kokam Manufactured Superior Lithium Polymer Battery cells |
2. Rated cell capacity: 75 Ah ;

3. Cellvoltage: 2.7V to 4.1V, average 3.7V | .
4. Maximum Continuous Charging Current: 2C (150 A) at 2313 °C foees E
5. Maximum Continuous Discharging Current: 5C (375 A) at 2313 °C

6. Peak Discharging Current: 8C (600 A), <10 sec and with >50% SoC

7. Cycle-Life: 4000 Cycles at 80% DoD, 1C (Charge) /1C (Discharge).

8. Charging Temperature: 10 to 35 °C

9. Discharging Temperature: -10 to 55 °C

Banks

1. 2 Banks; 4 Racks per Bank; 10 Series Modules per Rack; 2 Parallel
Strings of 18 Series Cells per Module

2. Battery Management System (BMS) at Module, Rack, and Bank
Level

3. Rack and Bank level BMS can provide critical information e.g.
average cell voltage and temperature
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BMS-CCS Integration & Initial Commissioning Learnings

Integration
1. BESS Programmable Logic Controller (PLC) is integrated with the Central Supervisory
System (CSS) PLC

2. CSS collects and processes information on campus load and PV generation to issue
commands for BESS operation

BESS PLC

PV Plant pLc Commands/ CSS PLC Commands/
" - Feedback

Commissioning Learnings

1. Energy efficiency measured from full charge-discharge cycle test: Bank A - 88.6%, Bank
B-89.0%

2. With proper air conditioning system, average cell temperature remained within 35 °C
at typical Gatton ambient

3. Tripping of inverters were observed due to high heatsink temperature (80 °C): correct
cooling and ventilation system is required and under modification

4. BMS under CSS control!
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