

SPREE Seminar

Solar PV Power Plants

From The Eyes of End-User

First Session

Omer Sarood

May 11, 2022

Abbreviations & Definitions - Refresher

- FC: Financial Close
- COD: Commercial Operation Date
- PPA: Power Purchase Agreement
- LCOE: Levelized Cost of Electricity / Energy
- GCR: Ground Coverage Ratio
- EPC: Engineering, Procurement & Construction
- DLP: Defect Liability Period
- O&M: Operation & Maintenance
- CAPEx: Capital Expenditure
- OPEx: Operational Expenditure
- DevEx: Project Development Expenditure

Utility Scale PV Power Plant

Directionally speaking, vertical orientation costs relatively lesser than horizontal one in the bigger picture of a project

PV Modules Types

• Mono-facial

Thin Film - CdTe

Poly-Si

Mono-Si

PV Modules Types

- Bi-facial
 - Ground albedo

Backside Energy Yield: Albedo

Bifacial gain improves with increasing ground Albedo

PV Modules Types

• Bi-facial

6.00%

- Ground albedo
- Bifacial gain

- PV Modules Industry of the future will be mostly based on bifacial modules as they have helped in producing record low LCOEs till 2021.
- As summarized by International Technology Roadmap for Photovoltaics (ITRPV) in 2021, bifacials have already penetrated half of the PV market, from 2028 on reaching a market share of 70%.
- IRTPV is proposing a fast grow of n-type technologies in the future with a market share of 50% from 2031 onwards all products then naturally being bifacial.

Graphs from ITRPV 2021 showing (left) bifacial share of PV technology and (right) the movement towards n-type technology.

Equipment Installed - Inverter

Central Inverters

- Power range 1MW to 4MW
- Typical Efficiency: 98.5%
- Top suppliers: Sungrow, SMA, Ingeteam, ABB, GE, Schneider Electric etc.

String Inverters

- Power Range 20 kW to 30 kW
- Typical Efficiency: 98.5%
- Top suppliers: Huawei, Sungrow, ABB etc.

Equipment Installed - Inverter

Inverter	Pros	Cons
Central type	 Fewer component connections and number of inverters required in plant Proven field reliability Lower \$/W price 	 Failure of single inverter results mostly in loss of complete power block Higher maintenance cost as more components (cooling system, filters) Maintenance may take longer time Higher installation cost and requires more area
String type	 Lower day-to-day maintenance (no fans, filter) Relatively higher plant availability as fewer arrays are impacted with one inverter failure Plug and play design - quick to replace Lesser foot-print 	 More inverter connections No. of inverters are quite large for same sized plant as compared to central type Relatively newer - less field-tested product

Equipment Installed

Mounting System Arrangement

Equipment Installed

Mounting System Arrangement

- Fixed Tilt
 - One side (N-S)
 - Dome shaped (E-W)
- Single Axis Tracker (N-S)
- Double Axis Tracker (N-S)

Figure 6: Geometries for bifacial systems and schematic power curves as a function of time of the day for each arrangement comparing monofacial with bifacial systems.

Equipment Installed

Single-Axis Trackers

- Power drive mechanism
 - Single / dual / multiple
- Backtracking
- Wind stow position of trackers
- Tracking algorithms & angular accuracy
- Mismatches during installation of trackers between the trackers in X/Y/Z/angular planes to be controlled

Backtracking When the sun's elevation angle is low in the sky, early or late in the day, self-shading between tracker rows has the potential to dramatically reduce system output. Backtracking rotates the array aperture away from the sun, eliminating deleterious effects of self-shading and maximizing ground cover ratio.

Source:

https://www.linkedin.com/feed/update/urn:li:ugcPost:6749168252112531456?updateEntityUrn=urn%3Ali%3Afs_updateV2%3A%28urn%3Ali%3AugcPost%3A6749168252112531456%2CFEED_ DETAIL%2CEMPTY%2CDEFAULT%2Cfalse%29

• Semi-Automated Cleaning (few examples)

hyCleaner

Sunbrush

BP Metalmeccanica

Gekko

Miraikikai

Solarcleano F1

• Fully-Automated Cleaning (few examples)

PVH

Sol-Bright

Tetra

Sunpure

ARCS – Automatic Robotic Cleaning System

- This system comprises of the following engineered components, each required to be compatible with others:
 - Robots
 - Communication System / SCADA
 - Structures
 - Stations
 - Docking/Parking Station
 - Return Station
 - Bridges
 - Dynamic/Flexible Bridges (required only in case of Trackers)
 - Static/Fixed Bridges
 - Module Binders (to minimize deflection of modules)

Equipment Installed - BoP

Typically, other important equipment installed at a Utility Scale Solar PV Power Plant is as follows:

- Transformers / Sub Station
- Weather Station
- PV Plant SCADA (Control System)
- HMIs
- Cables (DC & AC)
- Combiner boxes
- Others...

Global LCOEs from newly commissioned, utility-scale renewable power generation technologies, 2010-2020

LCOE : Levelized Cost of Electricity /Energy

- measure of av. Net present cost of electricity generation for a power plant during its life
- Ratio of present value of total cost over the life and present value of all electricity generated over the life of the project
- Good tool used by Developers to have both fixed costs & variable costs of project into a single measurement

- The global weighted-average LCOE of utility-scale PV plants declined by 85% between 2010 and 2020, from <u>USD 0.381/kWh to USD</u> <u>0.057/kWh</u>.
- This 2020 estimate also represents a 7% year-on-year decline from 2019.
- The 5th and 95th percentile of projects in 2020 ranged from USD 0.039/kWh to USD 0.163/kWh, which is a 79% and 68% decline in the 5th and 95th percentile values, respectively, compared with 2010.
- Top 10 Lowest globally (Mid 2021):
 - 1.04¢/kWh Saudi Arabia, 600 MW, announced April 2021
 - 1.239¢/kWh Saudi Arabia, 1.5 GW, announced April 2021
 - 1.316¢/kWh Portugal, % of 10 MW, announced August 2020
 - 1.35¢/kWh Abu Dhabi, 1.5 GW, announced April 2020
 - 1.50¢/kWh New Mexico, USA, 100 MW, announced May 2020
 - 1.57¢/kWh Qatar, 800 MW, announced January 2020
 - 1.61¢/kWh Saudi Arabia, 300 MW, announced April 2020
 - 1.65¢/kWh Portugal, 150 MW, announced July 2019
 - 1.69¢/kWh Dubai, 900 MW, announced December 2019
 - 1.75¢/kWh Brazil, 211 MW, announced July 2019

Global utility-scale solar PV project levelised cost of electricity and range, 2010-2020

Source: IRENA Renewable Cost Database

Solar PV module costs have declined so rapidly that new solar PV markets keep emerging around the globe

The PV industry is constantly seeing innovations:

- Increased adoption of larger polysilicon factories and improved ingot growth methods,
- to the increased ascendancy of diamond wafering methods
- the emergence and dominance of newer cell architectures etc.

Between 2010 & 2020:

• The decline in solar module cost contributed 46% to the LCOE reduction

Between December 2009 and December 2020, crystalline

silicon module prices declined between 89% and 95%

- Cost reduction in inverters, racking and mountain and other BoS hardware, contributed another 18% to the LCOE reduction
- Installation, engineering, procurement and construction (EPC) and development costs with other soft costs were responsible for about a quarter of the LCOE decline

Source: IRENA Renewable Cost Database

As per public domain information ..

As per public domain information..

Detailed breakdown of utility-scale solar PV total installed costs by country, 2020

Source: IRENA Renewable Cost Database

Thanks!

Any questions?