

Physics of the thermal behavior of photovoltaic cells

O. Dupré^{1*,2}, *Ph.D. candidate* R. Vaillon¹, M. Green², *advisors*

¹Université de Lyon, CNRS, INSA-Lyon, UCBL, CETHIL, UMR5008, F-69621 Villeurbanne, France ²Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney, 2052, Australia

* olivier.dupre@insa-lyon.fr, 0449068191

UNSW June 2014, Sydney

Fundamental losses in PV conversion

- Detailed balance principle (Shockley Queisser limit)
- Energy/Entropy balance (Thermodynamic limit)

2

3

Temperature T

(°C)

Dependences of these losses on temperature

Additional losses in real PV cells

- External Radiative Efficiency
- Intrinsic temperature coefficient of silicon cells

A thermal engineering view on PV performances

Detailed balance principle

Condition for an equilibrium:

ground state \rightarrow excited state = excited state \rightarrow ground state

Energy/Entropy balance

 Different energy forms do not contain the same amount of free energy (or exergy: energy that can be extracted to produce work) because they contain different amount of entropy

Energy/Entropy balance

Irreversible thermodynamics \rightarrow entropy fluxes

Analytical solution

 $\dot{N}(E_g, T, \mu, \Omega) \approx \frac{2\Omega}{c^2 h^3} \int_{E_g}^{\infty} \frac{E^2}{e^{\frac{E-\mu}{kT}}} dE \rightarrow \text{ analytical solution of (1)}$ Boltzmann approximation

$$qV_{opt} = E_g \left(1 - \frac{T_c}{T_s}\right) - \left(kT_c \ln(\frac{\Omega_{emit}}{\Omega_{abs}})\right) : re$$

Carnot efficiency Angle mismatch loss

: relates the optimal operating voltage and $E_{\alpha}^{(*)}$

(*) only correct when $E_a = E_a(max)$ but stays a good approximation for any E_a

$$\mathbf{P}_{\max} = J_{opt} V_{opt} = q(N_{abs} - N_{emit}(V_{opt}))(E_g - Carnot_{loss} - Angle mismatch_{loss})$$

Losses = f(Eg)

3rd gen PV > Shockley-Queisser limit

3rd gen PV > Shockley-Queisser limit

Band diagram of an ideal Si cell at MPP

IV curve of an ideal Silicon cell

Output power = Input power - Losses (BelowEg + Thermalization + Carnot + Angle mismatch + Emission)

O. Dupré, June 2014, UNSW

Some losses = $f(T_c)$

O. Dupré, June 2014, UNSW

Temperature coefficient

ß

Temperature coefficient = f(Concentration)

Additional losses in real devices

Additional losses in real devices

O. Dupré, June 2014, UNSW

IV curve of a commercial Silicon cell

Output power = Input power – Losses (BelowEg + Thermalization + Carnot + Angle mismatch + Emission + Non radiative recombination + Series + Shunt)

External Radiative Efficiency: ERE

Temperature coefficient = f(ERE)

Temperature coefficient = $f(T_c)$

 $(\boldsymbol{\beta}) = f(ERE_{MPP})$

Bandgap = $f(T_c)$, influence of the spectrum

Intrinsic B of silicon cells

Using the state-of-the-art parameters* and considering carefully their **temperature dependences**, we derived the temperature coefficient of the limiting efficiency of crystalline silicon solar cells

	(SQ limit with AM1.5)
η(298.15K) = 29.6%	< 33.4%
Intrinsic β of crystalline silicon cells = -2380 ppm/K	< -1582 ppm/K
This is obviously not a minimum but as silicon cells improve towards their limiting efficiencies, their temperature sensitivity is expected to converge toward this value	Differences with the SQ assumptions: •Auger recombination •Realistic absorbance of silicon with Free Carrier Absorption and assuming a Lambertian light trapping scheme $A_{bb}(E) = \frac{\alpha_{bb}(E)}{\alpha_{bb}(E) + \alpha_{FCA}(E) + \frac{1}{4n_r^2W}}$

O. Dupré, June 2014, UNSW

A thermal engineering view on PV performances

A thermal engineering view on PV performances

Conclusions and future work

Reducing Angle mismatch or Non Radiative losses improves efficiencies AND temperature coefficients of PV cells

At one sun, (β) is principally a function of the cell bandgap (Eg) and quality (ERE)

Thank you for your attention

Temperature coefficient of multi-junctions

