

Faculty of Engineering \ School of Photovoltaic and Renewable Energy Engineering Advanced Hydrogenation Group

Understanding the boron-oxygen defect: properties, kinetics and deactivation mechanisms

SPREE Seminar

University of New South Wales Sydney, Australia

9 November 2017

Nitin Nampalli

Supervisors: Malcolm Abbott, Stuart Wenham, Matthew Edwards

p-type silicon dominant for forseeable future

Different wafer types

Fig. 36: World market shares for different wafer types.

- *p*-type silicon dominant for forseeable future
- PERC cells seeing an increasing market share

Fig. 41: Worldwide market shares for different cell technologies.

Different cell technology

- *p*-type silicon dominant for forseeable future
- PERC cells seeing an increasing market share
- Surface passivation quality is improving

Recombination current densities

Fig. 25: Predicted trend for recombination currents JObulk, JOfront, JOrear for p-type and n-type cell concepts.

- *p*-type silicon dominant for forseeable future
- PERC cells seeing an increasing market share
- Surface passivation quality is improving

→ Strong imperative to:
 (a) Improve bulk quality
 (b) Minimise cell degradation

Recombination current densities

Fig. 25: Predicted trend for recombination currents JObulk, JOfront, JOrear for p-type and n-type cell concepts.

- Boron-oxygen defects are the most important source of LID in commercial Cz solar cells
- Cell efficiency loss:
 - PERC: 1-12%_{rel}
 - AI-BSF: 1-6%_{rel}

Mitigation of BO defects is of vital importance

- For a cell manufacturer producing 1,000 MW_p /year:
 - 60-120 MW_p/year in lost production
 - USD \$12-24 million/year in lost savings

The boron-oxygen defect

The boron-oxygen defect

- Behaviour described by 3-state model
- Focus of this work:
 - 1. Recombination properties
 - 2. Reaction kinetics
 - 3. Deactivation mechanisms

Recombination properties of the boron-oxygen defect

Never Stand Still

Engineering

S. Rein and S. Glunz, Applied Physics Letters 82(7), pp.1054-1056, 2003. X. Wang et al., Energy Procedia 55, pp.169-178, 2014.

- SRH properties of the BO defect (k, E_{trap})
- Impact of firing on k
- Impact of firing on defect density

- SRH properties of the BO defect (k, E_{trap})
- Impact of firing on k
- Impact of firing on defect density

Methods for determining recombination properties:

- -(IDLS:)Injection-Dependent Lifetime Spectroscopy
 - A common characterization method
 - Good sensitivity to k (if E_{trap} is known)
 - Low sensitivity to E_{trap} (for mid-gap defects)
- TDLS: <u>Temperature-Dependent</u> <u>Lifetime</u> <u>Spectroscopy</u>
 - Good sensitivity to E_{trap} , k
 - Analysis at single injection level (Δn)

- **TIDLS**: <u>Temperature</u>- and <u>Injection</u>-<u>Dependent Lifetime</u> <u>Spectroscopy</u>

- Best sensitivity to E_{trap} , k
- Analysis over full range of Δn

IDLS analysis

TIDLS analysis

TIDLS analysis

– Determine E_{trap} , k

 $E_{C} - E_{trap} = 0.41 \pm 0.10$ $k_{BO} = 11.5 \pm 1.00$

TIDLS analysis

– Determine E_{trap} , k

 $E_{C} - E_{trap} = 0.41 \pm 0.10$ $k_{BO} = 11.5 \pm 1.00$

– *T*-dependence of $\tau_{SRH,BO}$

$$lpha_{BO}$$
 = -2.3
 $\sigma_{n/p}(T) \propto T^{-2.3}$

- SRH properties of the BO defect (k, E_{trap})
- Impact of firing on k
- Impact of firing on defect density

Impact of firing – Experiment details

Impact of firing – Experiment details

Impact of firing on $k_{\rm BO}$

Impact of firing on NDD_{BO}

Summary – Properties of the BO defect

• SRH properties of BO:

27

- Determined $k_{BO} = 11.9 (> 9.3)$
- Confirmed that $E_{trap} = E_{C} 0.41 \text{ eV}$
- Determined that $\sigma_{n/p}(T) \propto T^{-2.3}$
- Impact of firing on BO properties: – Confirmed that k_{BO} is not affected by firing
 - Demonstrated that firing reduces NDD_{BO}
 - Firing can induce other (non-BO) CID defects in Cz silicon

Never Stand Still

Engineering

Temperature, T (° C)

- Degradation:
 - κ_{AB} appears to be independent of illumination intensity (>0.1 suns)
 - Other studies show $\kappa_{deg} \propto (p_0)^2$

- Annealing:
 - Known to occur in dark (no carrier dependence assumed)
 - But...one study showed $\kappa_{BA} \propto \frac{1}{p_0}$ for compensated Si

Does κ_{BA} have a carrier dependence?

Issue with reaction rate studies

• Process *T* ≠ Measurement *T* !

Need a method to determine $\Delta n(T)$ from $\tau_{eff}(300K)$ and G(300K)

Reaction kinetics of the BO system

• Model to obtain $\tau_{eff}(T)$ from $\tau_{eff}(300 \text{ K})$

• Temporary deactivation (annealing) kinetics

$$G(T) \neq \frac{\Delta n(T)}{\tau_{eff}(T, \Delta n)}$$

Parameter	Relevant lifetime component	Exponent of temperature dependence	Value for α_{param}
$ au_{ m bulk, fixed}*$	$ au_{\mathrm{bulk, fixed}}(T)$	α _b	2.880 ± 0.032
$S_{ m eff}$	$\tau_{\rm surf}(T)$	$lpha_{ m Seff}$	-1.395 ± 0.030
J_{0e}	$\tau_{\rm surf}(T)$	$lpha_{ m J0e}$	41.449 ± 0.044
$ au_{ m n0,BO}$	$ au_{ m SRH, \ BO}(T)$	$\alpha_{\rm n0,BO}$	1.870 ± 0.003
$\tau_{\rm n0,non-BO}^{}*$	$\tau_{\rm SRH,non-BO}(T)$	ano,non-BO	-1.420 ± 0.006
* may be specific to wafers used in this study			

Reaction kinetics of the BO system

• Model to obtain $\tau_{eff}(T)$ from $\tau_{eff}(300 K)$

• Temporary deactivation (annealing) kinetics

Annealing kinetics

Annealing kinetics

Reaction kinetics of the BO system

• Model to obtain $\tau_{eff}(T)$ from $\tau_{eff}(300 \text{ K})$

• Temporary deactivation (annealing) kinetics

Implications of degradation kinetics

• Fast initial degradation ("FRC")

– May be partially related to p^2 dependence

Implications of degradation kinetics

- Regeneration rates
 - Regen (B \rightarrow C) occurs only after degradation (A \rightarrow B)
 - $\kappa_{\rm BC}$ will be limited by $\kappa_{\rm AB}$

Summary – Reaction Kinetics

- Developed parameterization to obtain $\tau_{\rm eff}(T)$ from $\tau_{\rm eff}(300 \ K)$
- Carrier dependence confirmed for annealing (A → B), degradation (B → A)
- Carrier dependence explains other observed kinetics phenomena

Mechanisms for permanent deactivation of BO defects

Never Stand Still

Engineering

48

Deactivation mechanisms

• Why does regeneration occur?

• Why does thermal deactivation occur?

• Are they related?

State C

State A

50

Experimental Details

Deactivation mechanisms

• Why does regeneration occur?

• Why does thermal deactivation occur?

• Are they related?

Deactivation mechanisms

• Why does regeneration occur?

• Why does thermal deactivation occur?

• Are they related?

Thermal deactivation

Thermal deactivation

Similar thermal

reduction in oxide &

nitride passivated

samples

(i.e. Thermal

deactivation is not

hydrogen-related)

Thermal formation

Regeneration

State C

State A

Revision to 3 state model?

Can they be combined?

4 state model

Summary – Permanent deactivation

- Effective regeneration requires sufficient quantities of hydrogen. Regeneration could involve other mechanisms (slower).
- Thermal deactivation occurs independent of regeneration. Likely not hydrogen-related.

• Thermal deactivation is likely to be defect dissociation

 4-state model proposed to account for thermal deactivation

Implications of this work

Never Stand Still

Engineering

Implications

1. Improved understanding of the BO defect

- Recombination properties

- Mechanism of permanent deactivation

4-state model

Impact:

- Easier identification of the BO defect
- Multiple, tailored solutions to mitigate BO defect

Implications

2. Accurate reaction kinetics modelling for BO

– 4-state model

– Conversion from $\tau_{\rm eff}(300K)$ to $\tau_{\rm eff}(T)$

- Carrier dependence of reactions

Impact:

- Better estimate of regeneration time-scales for industrial wafers / solar cells

Acknowledgements

- Funding sources
- Australian Renewable Energy Agency (ARENA)
- Australian Center for Advanced Photovoltaics (ACAP)
- UK Institution of Engineering and Technology (IET) / A.F. Harvey Engineering Prize.
- Commercial partners (ARENA 1-A060)

Acknowledgements

- Supervisors: Malcolm Abbott, Stuart Wenham, Matt Edwards
- Hydrogenation group
- Laboratory:
- MAiA processing team
- LDOT team
- Others
- Admin staff:
- TETB
- SPREE
- Friends and family

Thank you for your attention

nnampalli@gmail.com

- *p*-type silicon dominant for forseeable future
- PERC cells seeing an increasing market share
- Surface passivation quality is improving
- "Reliable kWh" is increasingly important

Warranty requirements & degradation for c-Si PV modules

Fig. 48: Expected trend for product warranties and degradation of c-Si PV modules

