
Australian Centre for Advanced Photovoltaics

Manufacturing Cost Analysis Method Perovskite and c-Si results Nathan Chang

Cost Analysis Background

- > 15 years in Solar. R&D and Manufacturing Pacific Solar / CSG Solar / Suntech R&D Australia
- Cost analysis of CSG Thin film silicon technology
 - 1999-2003 Lab process Guide research
 - 2004-2005 Lab process Justify Manufacturing
 - 2006–2008 Lab/Manufacturing process Analysing process changes

Problem: Accurate Data

- Technical
 - Process sequence? What Equipment? Material utilization? Cell/Module efficiencies?
- Cost
 - Single tool cost? Multiple tool cost? High volume pricing of materials?
- Market
 - Selling price?
 - Special features?

Cost analysis method – Part 1

• Monte Carlo Analysis

Select Parameter Ranges

	A	С	D	E	F	Н	I	J	К
		Tool Cost		Thruput	Facility	Spare	Electrical Power	#	
1	Iteration	(US\$k)	time (%)	(m2/h)	Capex (%)	Parts (%)	(kW)	Operators	# Maint
2	nom	1274	6	87	15	3	52	2	3
3	low	892	4	83	10	2	36	1	2
4	high	1656	8	92	20	5	67	3	4

Generate values for parameters

	А	С	D	E	F	H	1	J	K
		Tool Cost	Down	Thruput	Facility	Spare	Electrical Power	#	
1	Iteration	(US\$k)	time (%)	(m2/h)	Capex (%)	Parts (%)	(kW)	Operators	# Maint
2	nom	1274	6	87	15	3	52	2	3
3	low	892	4	83	10	2	36	1	2
4	high	1656	8	92	20	5	67	3	4
5	0	987.4		1 10					
6	1	1556.4	IW	o nait	log no	rmai d	Istribu	ition wh	nere:
7	2	951.1	Me	dian =	Nomi	nal			
8	3	1122.7	_	_	-	_			
9	4	1366.3	10 ^t	th perc	entile :	= Low			
10	5	1044.4		th perc	ontilo -	- Hiah			
5004	4999	2071.6	90	perc	entile	= nign			

$$\sigma_H = \ln(Y_{High}/Y_{Nom})/1.28$$

$$\sigma_L = \ln(Y_{Nom}/Y_{Low})/1.28$$

$$Y_i = \begin{cases} Y_{Nom} \cdot \exp(\sigma_H \cdot Z_i) & \text{if } Z_i > 0\\ Y_{Nom} \cdot \exp(\sigma_L \cdot Z_i) & \text{if } Z_i < 0 \end{cases}$$

Z_i = a sample of the standard normal distribution

In Excel: Norm.S.Inv(rand())

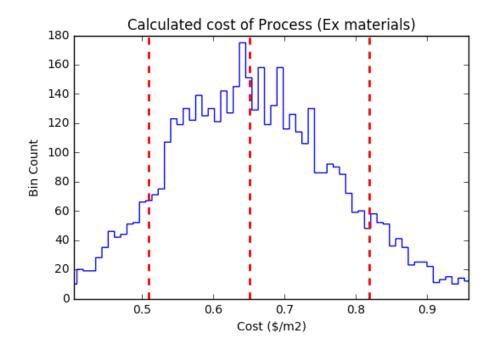
Example Generated parameters

	A	С	D	E	F	Н	I	J	K
		Tool Cost	Down	Thruput	Facility	Spare	Electrical Power	#	
1	Iteration	(US\$k)	time (%)	(m2/h)	Capex (%)	1. Col.	(kW)	Operators	# Maint
2	nom	1274	6	87	15	3	52	2	3
3	low	892	4	83	10	2	36	1	2
4	high	1656	8	92	20	5	67	3	4
5	0	987.4				То	ol Cost Da	ata	
6	1	1556.4		200	, , ,				1
7	2	951.1			1		·	1	
8	3	1122.7							
9	4	1366.3		150 -	- i	П	1 LN		
10	5	1044.4			1.1	ם ול חם			
5004	4999	2071.6	L L		- T	، بال		_	
			Bin Count	100 - 50 -					
					00 100	0 1200	1400	1600	1800 20

Cost (US\$k)

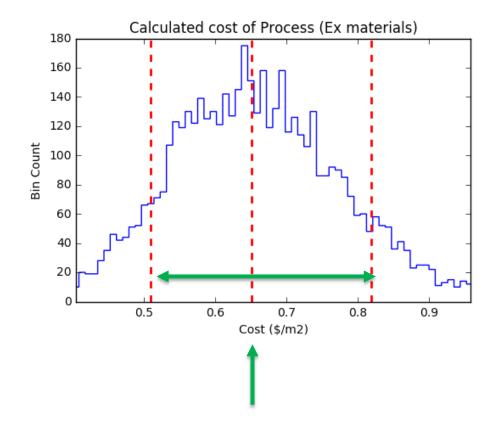
Repeat for each parameter

	А	C	D	E	F	Н	I	J	К
		Tool Cost	Down	Thruput	Facility	Spare	Electrical Power	#	
1	Iteration	(US\$k)	time (%)	(m2/h)	Capex (%)	Parts (%)	(kW)	Operators	# Maint
2	nom	1274	6	87	15	3	52	2	3
3	low	892	4	83	10	2	36	1	2
4	high	1656	8	92	20	5	67	3	4
5	0	987.4	6.77	82.27	21.03	3.57	55.00	2.53	2.05
6	1	1556.4	7.76	88.97	18.12	1.45	37.46	2.27	2.91
7	2	951.1	3.78	97.61	15.45	4.05	58.99	2.76	2.64
8	3	1122.7	3.30	82.56	16.58	4.27	40.81	2.10	3.06
9	4	1366.3	5.84	88.98	13.41	3.79	41.96	2.01	3.21
10	5	1044.4	5.61	82.22	10.27	3.38	46.63	1.55	3.37
5004	4999	2071.6	2.84	83.14	19.36	4.02	40.44	1.89	3.50


Calculate each iteration

	A	С	D	E	F	H			J		K
							Electrical				
		Tool Cost	Down	Thruput	Facility	Spare	Power	#			
1	Iteration	(US\$k)	time (%)	(m2/h)	Capex (%)	Parts (%)	(kW)	Ope	rators	# M	aint
2	nom	1274	6	87	15	3	52		2		3
3	low	892	4	83	10	2	36		1		2
4	high	1656	8	92	20	5	67		3		4
5	0	987.4	6.77	82.27	21.03	3.57	55.00		2.53		2.05
6	1	1556.4	7.76	88.97	18.12	1.45	37.46		2.27		2.91
7	2	951.1	3.78	97.61	15.45	4.05	58.99		А		AI
8	3	1122.7	3.30	82.56	16.58	4.27	40.81				
9	4	1366.3	5.84	88.98	13.41	3.79	41.96			Т	otal Cost
10	5	1044.4	5.61	82.22	10.27	3.38	46.63	1	Iteration		5/m2)
5004	4999	2071.6	2.84	83.14	19.36	4.02	40.44	5		0	0.68
								6		1	0.70
								7		2	0.56
	Cloba		ntiona	0.0	N			8		3	0.62
	Globa	lassum	ptions, (ey				9		4	0.65
	• Ele	ectricity	cost			$\boldsymbol{\rangle}$		10		5	0.56
		kWh)			\neg			5004	4	999	0.89

- Labour cost (\$/h)
- Depreciation time (years)


Analyse Total Cost

	А	AI
	~	
		T
		Total Cost
1	Iteration	(\$/m2)
5	0	0.68
6	1	0.70
7	2	0.56
8	3	0.62
9	4	0.65
10	5	0.56
5004	4999	0.89

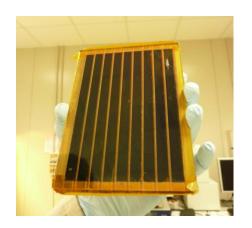
Analyse Total Cost

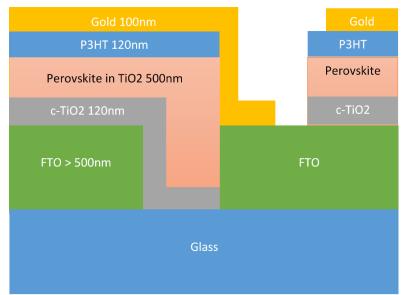
Normalised Uncertainty = $(90^{th} - 10^{th})$ / Median

	А	AI
		Total Cost
1	Iteration	(\$/m2)
5	0	0.68
6	1	0.70
7	2	0.56
8	3	0.62
9	4	0.65
10	5	0.56
5004	4999	0.89
5005		
5006		
5007	Median	0.66
5008	10th %	0.51
5009	90th %	0.81
5010	Norm Uncert	0.46

All processes and materials

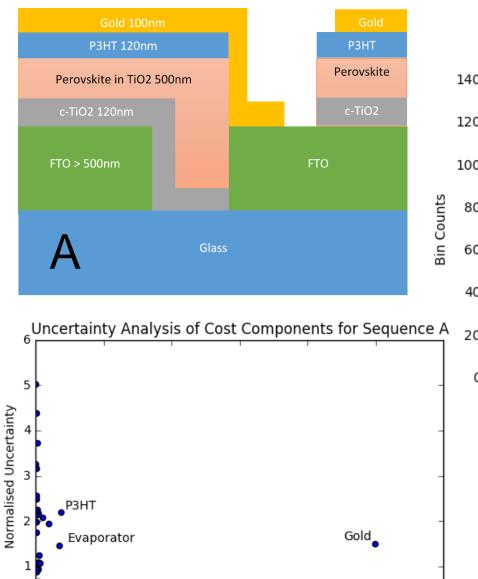
	Α	В	С		D	E	F	н	1	К	L	М	N	0	Р	Q	R	S	Т	U
1	Seq		-								Α								_	
										Rear		Rear	Screen	Screen	Screen	Texture	Wafer			Total
		Cell	Diffusion	Diff	usion	Firing	Front Ag	PECVD	PECVD	Etch	Rear	etch	Print	Printer	Printer	Etch	Etch	Wafer	p-type	Cell cost
2	lter	Test	Furnace	cher	ms	Furnace	paste	SiN	chems	chems	Pastes	bath	Screens	(rear)	(front)	chems	Bath	Inspect	wafer	\$/m2
3	0	0.71	0.98		2.24	0.42	1.24	0.59	0.52	1.31	1.96	0.62	0.03	0.54	0.15	0.45	0.53	0.61	29.39	42.29
4	1	0.65	0.65		1.77	0.50	1.47	0.53	- 0.60	1.06	1.24	0.47	0.06	0.39	0.18	0.64	0.39	-0.63	32.19	▶ 43.44
5	2	0.66	1.11		2.14	0.40	1.67	0.68	1.02	2.19	1.10	1.04	0.04	0.38	0.18	1.02	0.46	0.72	30.91	45.71
6	3	0.55	1.18		1.97	0.35	1.75	0.63	1.02	1.13	1.44	0.94	0.05	0.31	0.15	0.74	0.39	0.86	30.85	44.32
7	4	0.50	0.91		1.37	0.33	1.56	0.79	0.95	1.04	1.53	0.71	0.05	0.52	0.14	0.58	0.43	-0.62	32.91	▶ 44.93
8	5	0.63	0.96		2.00	0.32	1.45	0.74	0.80	1.43	1.44	0.85	0.05	0.55	0.21	0.60	0.52	0.69	31.07	44.32
9	6	0.89	0.95		1.59	0.44	1.72	0.54	0.82	0.98	1.73	0.66	0.04	0.62	0.19	0.53	0.58	0.46	37.26	50.00
5002	4999	0.61	1.34		2.70	0.30	0.95	0.69	0.57	1.36	1.61	0.69		0.39	0.15	0.55	0.75	0.49	32.40	♦ 45.60
5003																				
	Norm								*				*					*		
5004	Uncer	0.39	0.50		0.59	0.44	0.60	0.47	0.59	0.60	0.60	0.50	0.62	0.50	0.62	0.60	0.47	0.39	0.26	0.19
5005	Med	0.66	0.92		1.94	0.40	1.69	0.65	0.75	1.30	1.70	0.71	0.04	0.45	0.16	0.67	0.49	0.62	32.26	45.53

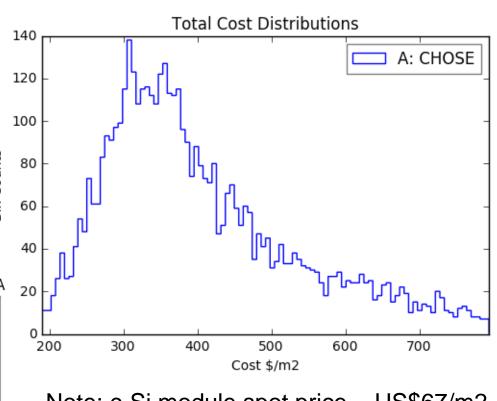



All processes and materials

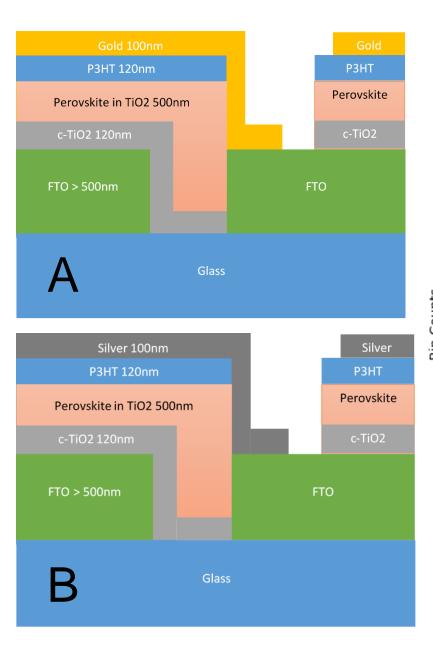
	Α	В	С	D	E	F	Н	1	К	L	М	Ν	0	Р	Q	R	S	Т	U
1	Seq									A									
				Diffusion	_	Front Ag			Rear Etch	Rear	Rear etch	Screen Print	Printer	Printer		Etch			Total Cell cost
	Iter		Furnace	chems	Furnace	paste	SiN	chems	chems	Pastes	bath	Screens	(rear)	(front)	chems	Bath	Inspect	wafer	\$/m2
3 4	0	0.71 0.65																	42.29
5	2	0.66							6		T - + -								45.71
6	3	0.55			180				Sequ	lence	e Tota	al Cost				_			44.32
7	4 5	0.50				'	- 1			'	1		1	'	'				44.93 44.32
9	6	0.89			160	ŀ	- 11			п			÷ .			-			50.00
5002	4999	0.61			140	-		ր.–		1									45.60
					120	-		ป		ՍԿ	5					-			
					Bin Count 80	ŀ	-				Ч	п	1			-			
					08 BID	ŀ						᠋᠋᠋ᢅᡃ᠋ᠺ᠋	i.			-			
					60	ŀ						l	Կ			-			
					40	ի ԽԴ	l						L	~~ п		-			
					20	۶Ľ								L' I	ղե				
					0					46	40		_	52		<u>'</u>			
						40	42	4	4	46 Cost	48 (\$/m2	50)	,	52	54				

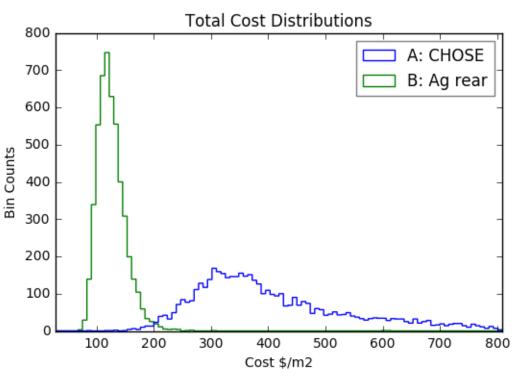
Application 1 – Perovskite on glass (CHOSE 100 cm² module*)


Layer	Formation Method	Pattern Method
FTO Glass	Purchased	Laser 1
C-TiO2	Spray Pyrolysis	Chemical lift off (Ag mask)
TiO2 Scaffold	Screen Print	Laser 2
Two-step perovskite	Blade Coat	Laser 2
P3HT (HTM)	Blade Coat	Laser 3
Metal (Gold)	Evaporation	Masked

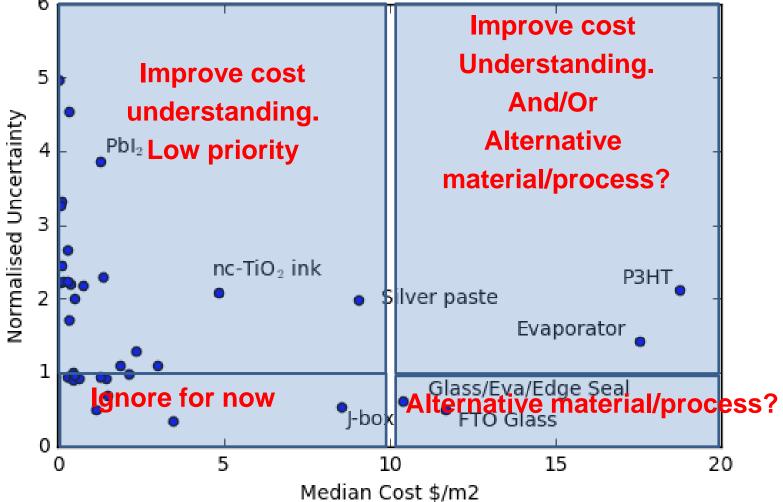

Cost Data Sources

- Thin film silicon cost publications.
- c-Si cost publications
- OPV cost publications
- CdTe cost publications
- Materials suppliers (list prices)




Median Cost \$/m2

Note: c-Si module spot price ~ US\$67/m2

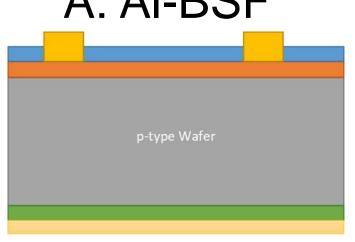


c-Si module spot price ~ US67/m2

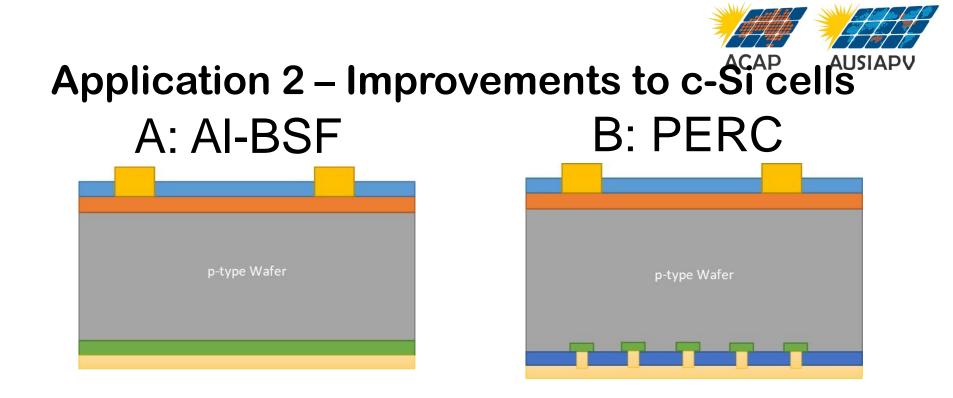
Normalised Cost Uncertainty = (90th – 10th)/ Median

Perovskite on Glass – Guidance to Researchers

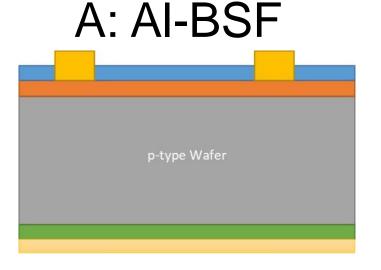
- Gold as rear layer prohibitive cost.
- P3HT material can it be replaced? Cost study?
- Evaporated metal can it be replaced? Cost study?
- More Details:

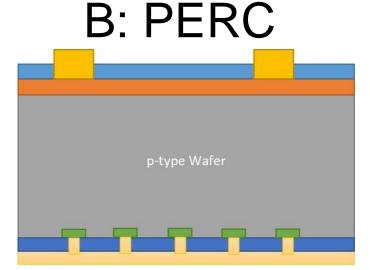

N. L. Chang, A. Y. Ho-Baillie, P. A. Basore, T. L. Young, R. Evans, R. J. Egan. **A** manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules, *Progress in Photovoltaics: Research and Applications* 25 (5) (2017) 390–405

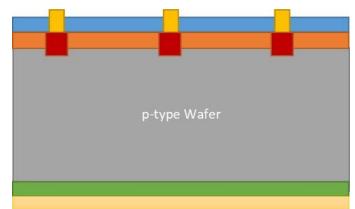
 Includes: Additional cost improvements, LCOE analysis, efficiency and lifetime targets.


Cost Analysis Method – Part 2

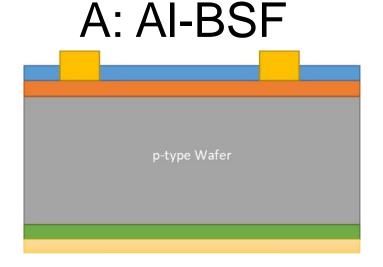
- What about:
 - Efficiency (\$/m2 -> \$/W)
 - Market value (selling price)
 - Premium for high efficiency (higher \$/W price)
 - Impact of changed energy yield (eg temperature co-efficient, light induced degradation, lifetime)
 - $_{\odot}$ Other features (light-weight, aesthetics).

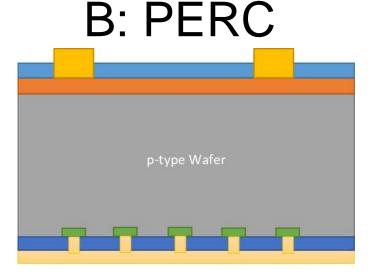

A: AI-BSF

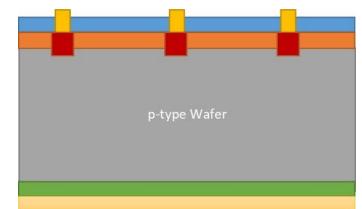

- Aluminium Back Surface Field
- Previous standard in c-Si manufacturing.
- ~ 20% cell efficiency (p-type mono wafer, ITRPV)


B: PERC

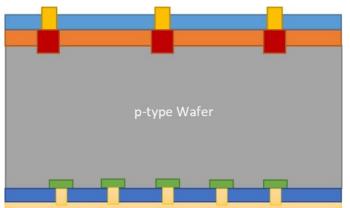
- Passivated Emitter and Rear Cell
- Improved rear, higher Eff
- New standard in c-Si manufacturing.
- ~21.3% eff (p-type mono, ITRPV)



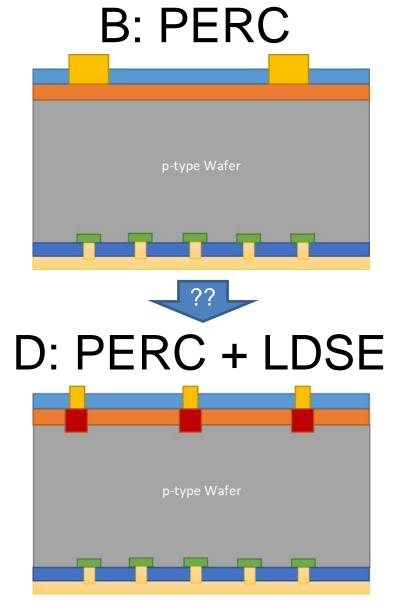

C: AI-BSF + LDSE


C: AI-BSF + LDSE

- Laser Doped Selective Emitter
- Improved front, higher Eff
- Suntech Pluto
- Estimate potential ~0.5%abs better than A



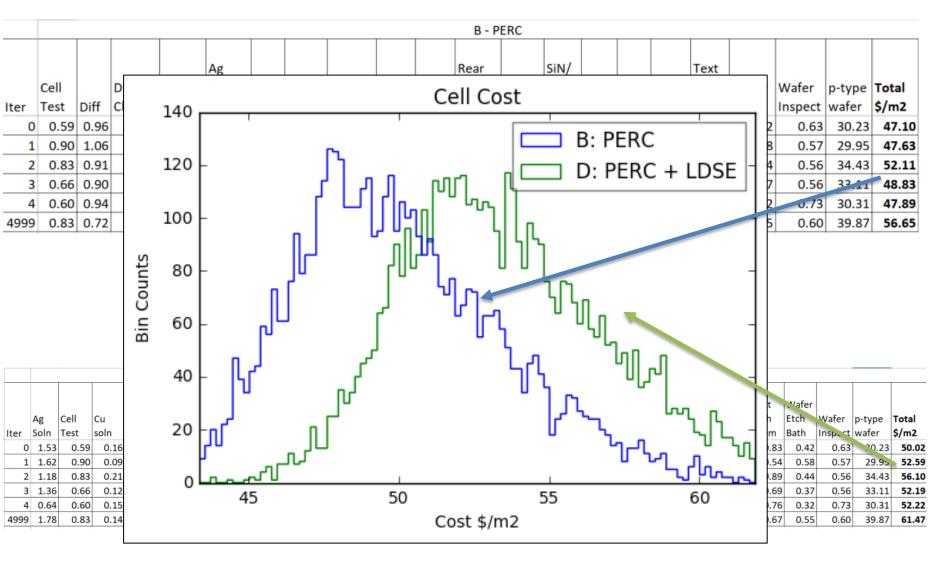
C: AI-BSF + LDSE



D: PERC + LDSE

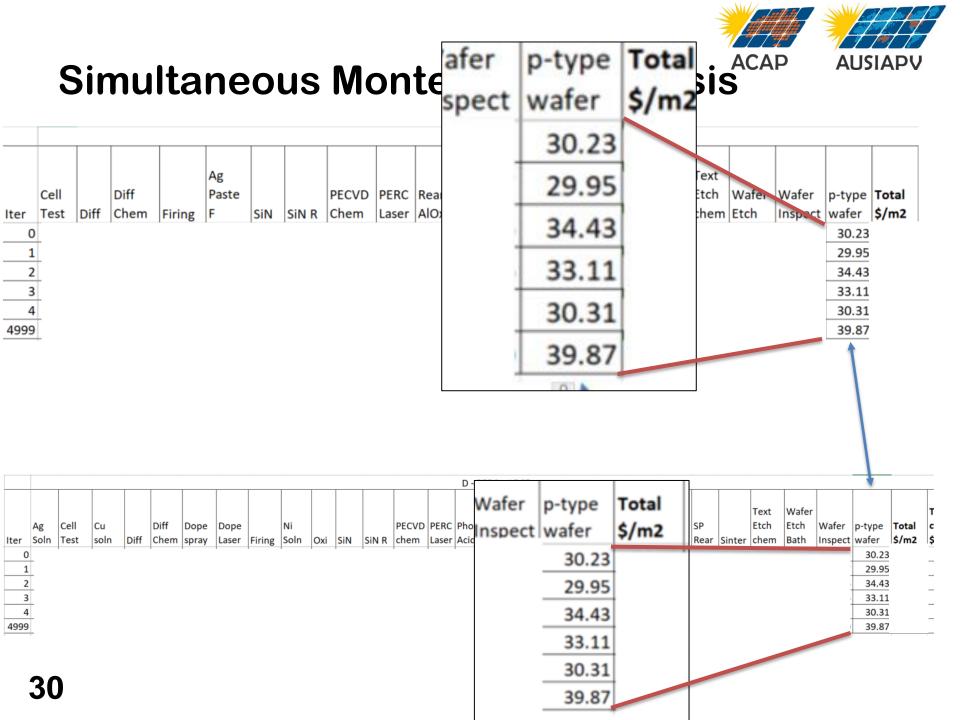
Question:

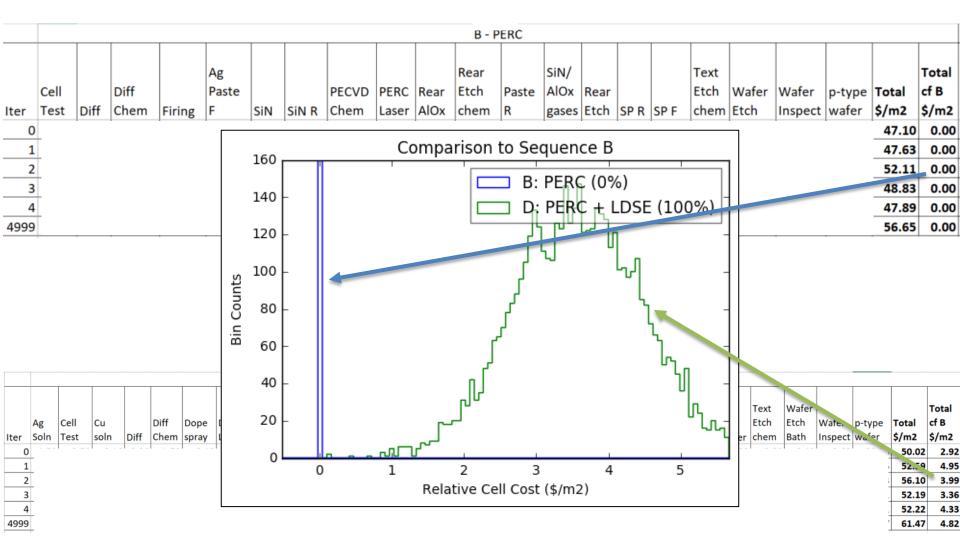
- Is LDSE worth adding to a PERC cell?
- Higher cost, but higher efficiency.
- Estimate potential ~0.9%abs better than B



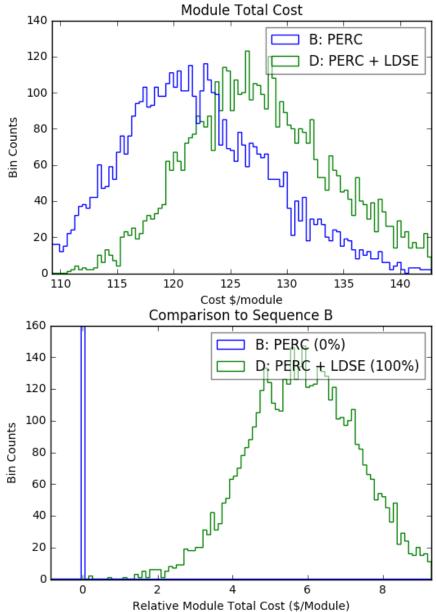
Data Sources

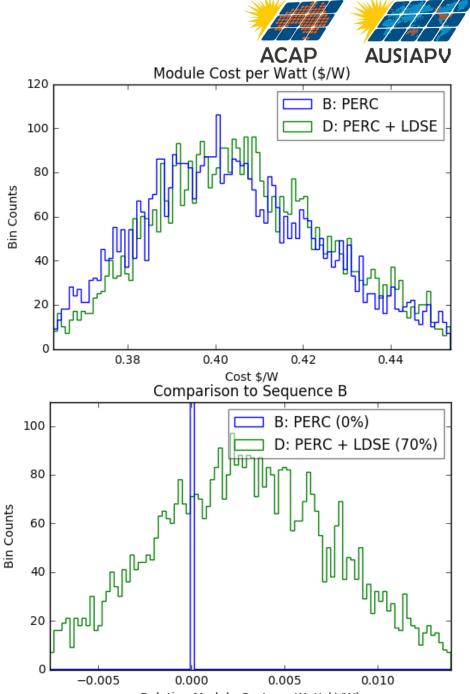
- Processing Details
 - PERC Sunrise
 - LDSE UNSW publications
- Cost Details
 - PERC, Module Michael Woodhouse (NREL)
 - LDSE UNSW
- Efficiency
 - PERC ITRPV
 - PERC + LDSE Extrapolated UNSW publications
- Wafer/Module Market Pricing
 - EnergyTrend, Bloomberg, PVXchange


Simultaneous Monte Carlo Analysis


Simultaneous Monte Carlo Analysis

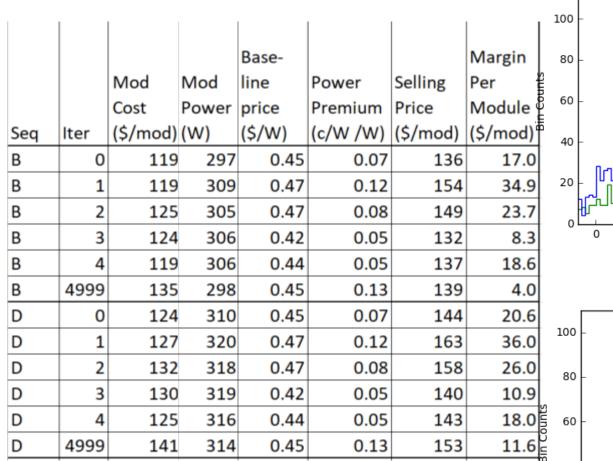
	B - PERC																				
					Ag						Rear		SiN/				Text				
	Cell		Diff		Paste			PECVD	PERC	Rear	Etch	Paste	AlOx	Rear			Etch	Wafer	Wafer	p-type	Total
Iter	Test	Diff	Chem	Firing	F	SiN	SiN R	Chem	Laser	AlOx	chem	R	gases	Etch	SP R	SP F	chem	Etch	Inspect	wafer	\$/m2
0	0.59	0.96	1.50	0.47	2.29	0.58	0.38	1.61	0.70	1.61	1.21	1.78	0.19	0.60	0.42	0.09	0.83	0.42	0.63	30.23	47.10
1	0.90	1.06	1.25	0.36	1.53	0.69	0.24	1.64	0.79	2.06	1.22	2.11	0.22	1.19	0.52	0.17	0.54	0.58	3 0.57	29.95	47.63
2	0.83	0.91	2.27	0.33	1.49	0.52	0.30	1.68	0.51	2.07	1.41	2.00	0.21	0.62	0.44	0.17	0.89	0.44	0.56	34.43	52.11
3	0.66	0.90	1.42	0.41	2.08	0.60	0.34	1.35	0.84	1.68	1.11	1.31	0.14	0.73	0.31	0.18	0.69	0.37	0.56	33.11	48.83
4	0.60	0.94	2.70	0.43	1.43	0.79	0.31	1.68	0.64	1.42	1.29	2.29	0.18	0.50	0.36	0.15	0.76	0.32	0.73	30.31	47.89
4999	0.83	0.72	2.59	0.52	1.55	0.64	0.31	1.12	0.75	1.39	1.37	1.60	0.17	0.70	0.52	0.15	0.67	0.55	0.60	39.87	56.65
											D - PERC	+ LDSE									1
													Rea		SiN/	Rear		Text			
	eg Cell			liff Dope			Ni Soln Oxi	SIN			Phosph	Plating Re	ear Eto	h Rear	AlOx	etch	SP Rear S	Etch	Etch V	Nafer p-ty	
Iter S	oln Test	t soln	Diff C	hem spray	/ Laser		Soln Oxi		NR che	m Laser	Phosph Acid	Plating Re Bath Al	ear Etc Ox che	h Rear em Paste	AlOx s gases	etch bath	Rear S	Etch inter che	n Etch V m Bath II	nspect waf	
Iter S	oln Test 1.53 0	t soln 0.59 0.	Diff C	hem spray	/ Laser 18 0.78	Firing	Soln Oxi	1 0.58	N R che 0.38 1		Phosph Acid 0.04	Plating Re Bath Al 1.41	ear Etc Ox che 1.61 1	h Rear	AlOx s gases 8 0.19	etch bath 0.60	Rear S	Etch inter cher 0.39 0	n Etch V m Bath II	nspect waf 0.63 3	er \$/m2
Iter S 0 1	oln Test 1.53 0 1.62 0	t soln 0.59 0. 0.90 0.	Diff C 16 0.96 09 1.06	hem spray	Laser 18 0.78 17 1.49	Firing 0.47	Soln Oxi 0.30 0.5	1 0.58 1 0.69	N R che 0.38 1 0.24 1	m Laser .61 0.70	Phosph Acid 0.04	Plating Ro Bath Al 1.41 2.01	ear Etc Ox che 1.61 1 2.06 1	h Rear em Paste .21 1.7	AlOx s gases 78 0.19 .1 0.22	etch bath 0.60 2 1.19	Rear S	Etch inter che 0.39 0 0.27 0	n Etch W m Bath I .83 0.42	nspect waf 0.63 3 0.57 2	er \$/m2 0.23 50.02
Iter S 0 1 2 3	oln Test 1.53 0 1.62 0 1.18 0 1.36 0	t soln 0.59 0. 0.90 0. 0.83 0. 0.66 0.	Diff C 16 0.96 09 1.06 21 0.91 12 0.90	hem spray 1.50 0. 1.25 0. 2.27 0. 1.42 0.	Laser 18 0.78 17 1.49 20 1.07 20 0.99	Firing 0.47 0.36 0.33 0.41	Soln Oxi 0.30 0.5 0.35 0.6 0.45 0.6 0.32 0.7	1 0.58 1 0.69 4 0.52 5 0.60	N R che 0.38 1 0.24 1 0.30 1 0.34 1	m Laser .61 0.70 .64 0.79 .68 0.51 .35 0.84	Phosph Acid 0.04 0.05 0.04 0.04	Plating Re Bath Al 1.41 2.01 1.56 1.62	ear Etc Ox che 1.61 1 2.06 1 2.07 1 1.68 1	h Rear em Paste 21 1.7 22 2.1 41 2.0 11 1.3	AlOx s gases 8 0.19 1 0.22 0 0.21 1 0.14	etch bath 0 0.60 2 1.19 1 0.62 0.73	Rear S 0.42 0.52 0.44 0.31	Etch inter cher 0.39 0 0.27 0 0.30 0 0.24 0	Etch V Bath I 83 0.42 54 0.58 89 0.44 69 0.37	nspect waf 0.63 3 0.57 2 0.56 3 0.56 3	er \$/m2 0.23 50.02 9.95 52.59 4.43 56.10 3.11 52.19
Iter S 0 1 2 3	oin Test 1.53 0 1.62 0 1.18 0 1.36 0 0.64 0	t soln 0.59 0. 0.90 0. 0.83 0. 0.66 0. 0.60 0.	Diff C 16 0.96 09 1.06 21 0.91 12 0.90 15 0.94	hem spray 1.50 0 1.25 0 2.27 0 1.42 0 2.70 0	Laser 18 0.78 17 1.49 20 1.07	Firing 0.47 0.36 0.33	Soln Oxi 0.30 0.5 0.35 0.6 0.45 0.6 0.32 0.7 0.32 0.5	1 0.58 1 0.69 4 0.52 5 0.60 8 0.79	N R che 0.38 1 0.24 1 0.30 1 0.34 1 0.31 1	m Laser .61 0.70 .64 0.79 .68 0.51	Phosph Acid 0.04 0.05 0.04 0.04 0.04	Plating Re Bath Al 1.41 2.01 1.56 1.62 2.21	ear Etc Ox che 1.61 1 2.06 1 2.07 1 1.68 1	h Rear Paste 21 1.7 22 2.1 41 2.0 11 1.3 29 2.2	AlOx s gases 28 0.19 1 0.22 00 0.21 1 0.14 29 0.18	etch bath 0 0.60 2 1.19 1 0.62 4 0.73 3 0.50	Rear S 0.42 0.52 0.44	Etch inter cher 0.39 0 0.27 0 0.30 0 0.24 0 0.21 0	Etch W m Bath H .83 0.42 .54 0.58 .89 0.44	nspect waf 0.63 3 0.57 2 0.56 3 0.56 3 0.73 3	er \$/m2 0.23 50.02 9.95 52.59 4.43 56.10

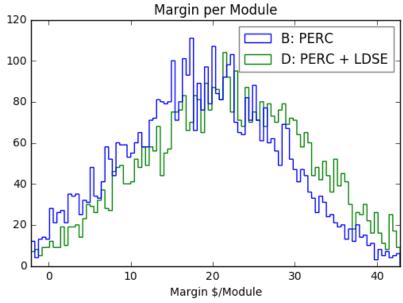

Simultaneous Monte Carlo Analysis

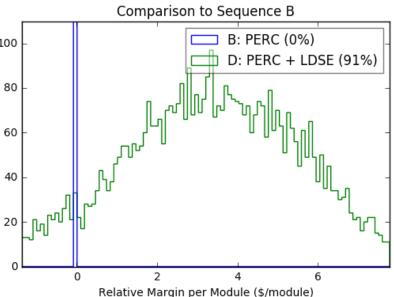

Module fabrication costs

		Cell		Module	Module
		Cost	Cell	Conv	Cost
Seq	lter	\$/m2	Yield (%)	(\$/mod)	(\$/mod)
В	0	47.1	99.1	40.96	119
В	1	47.6	99.4	40.09	119
В	2	52.1	99.2	38.72	125
В	3	48.8	98.6	42.80	124
В	4	47.9	98.9	39.17	119
В	4999	56.7	97.9	40.26	135
D	0	50.0	99.3	40.96	124
D	1	52.6	99.3	40.09	127
D	2	56.1	98.6	38.72	132
D	3	52.2	98.7	42.80	130
D	4	52.2	99.3	39.17	125
D	4999	61.5	99.7	40.26	141

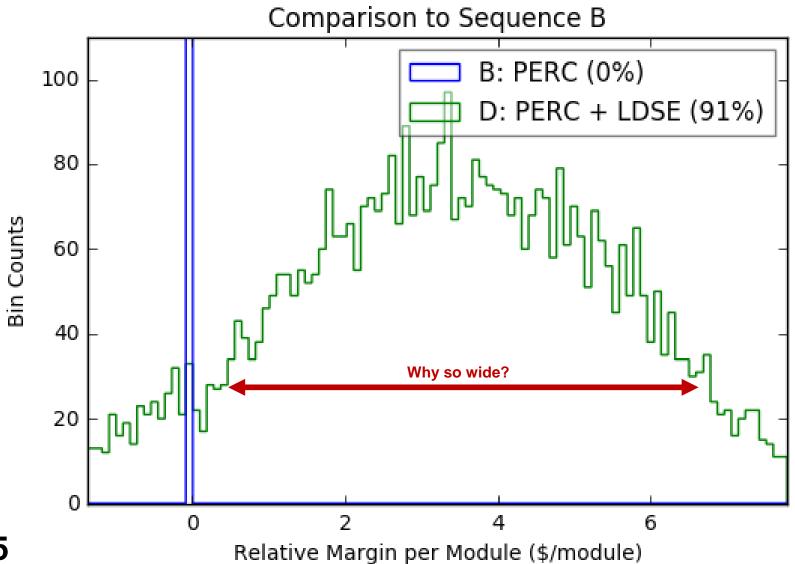
Efficiency


		Mod		стм	Mod	Mod
		Cost	Cell	Power	Power	Cost
Seq	lter	(\$/mod)	Eff (%)	Ratio	(W)	(\$/W)
В	0	119	21.0	0.976	297	0.400
В	1	119	21.5	0.989	309	0.384
В	2	125	21.4	0.981	305	0.409
В	3	124	21.5	0.977	306	0.406
В	4	119	21.4	0.984	306	0.388
В	4999	135	21.1	0.971	298	0.453
D	0	124	21.8	0.976	310	0.399
D	1	127	22.3	0.989	320	0.396
D	2	132	22.3	0.981	318	0.415
D	3	130	22.5	0.977	319	0.406
D	4	125	22.1	0.984	316	0.397
D	4999	141	22.3	0.971	314	0.450

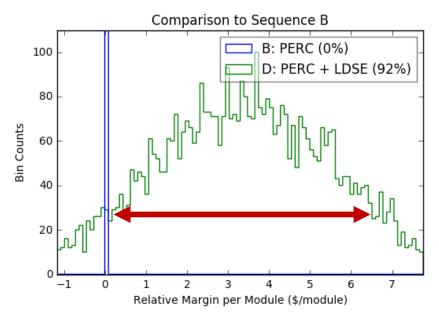



Relative Module Cost per Watt (\$/W)

Market Price -> Margin



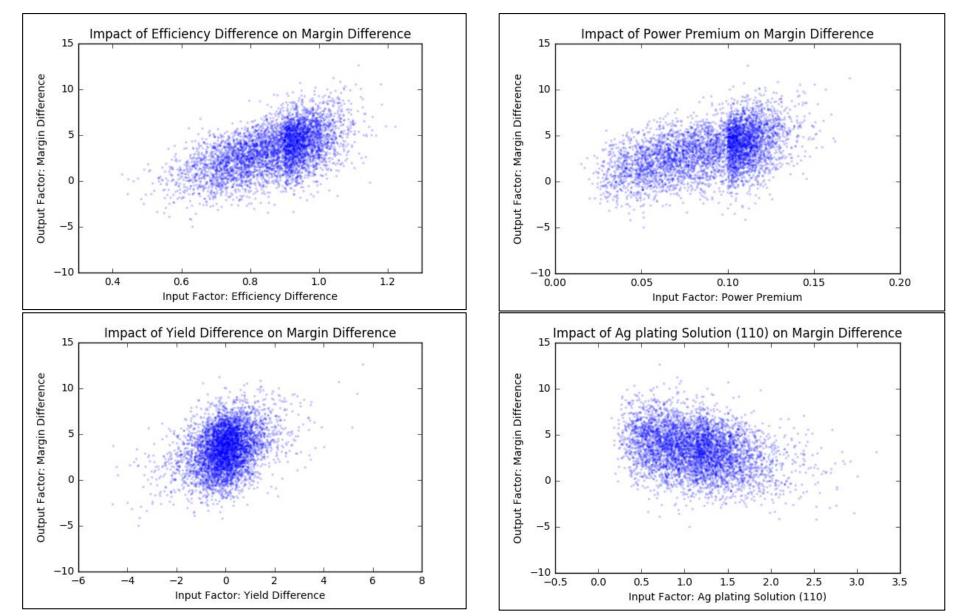
Margin per module



35

Uncertainty in the Margin difference

- Process costs (Normalised uncertainty)
 - Common processes
 - + oxide, Laser doping, plating, sinter
 - front silver screenprint
- Efficiency boost from LDSE
- Difference in cell fabrication yield
- Market module price
- High power price premium



Linear Regression – contribution to^{ACAP} variance

Parameter	Range (10 th – 90 th percentile)	Contribution to uncertainty (%)
Efficiency difference	0.7 – 1.0 %abs	30%
Power Premium	0.05 – 0.12 c/W per additional module W	24%
Yield Difference	+/ 1 %	11%
Ag plating solution	0.56 – 1.7 \$/m2	10%
Front Ag paste cost	1.2 – 2.2 \$/m2	9%

Graphical Representation

Analysis 2 – Conclusions

- LDSE front with PERC rear has promise.
 - \$/W basis Not beneficial at module level
 - Margin basis looks attractive, but uncertainty
 - Performance (efficiency gain, production yield)
 - Prove in the lab?
 - o Price premium. Can we be more confident of this?
 - Individual process costs less relevant.
- More Details:
 - Paper in Preparation.
 - Advanced Hydrogenation is also analysed.

Summary

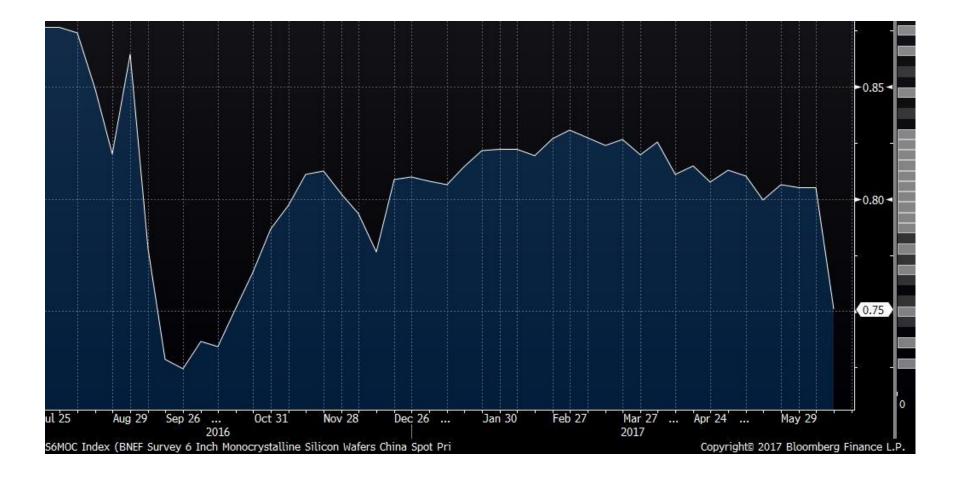
- Cost analysis method and benefits
 - Monte Carlo uncertainty -> Less time/effort required.
 - Normalised uncertainty –> Focus process development and cost analysis efforts.
 - Simultaneous monte carlo -> distinguish incremental improvements.
 - Contribution to variance -> identify critical cost, performance or market parameters.
- Technologies discussed
 - Perovskite on glass.
 - c-Si PERC and LDSE.

Special Thanks

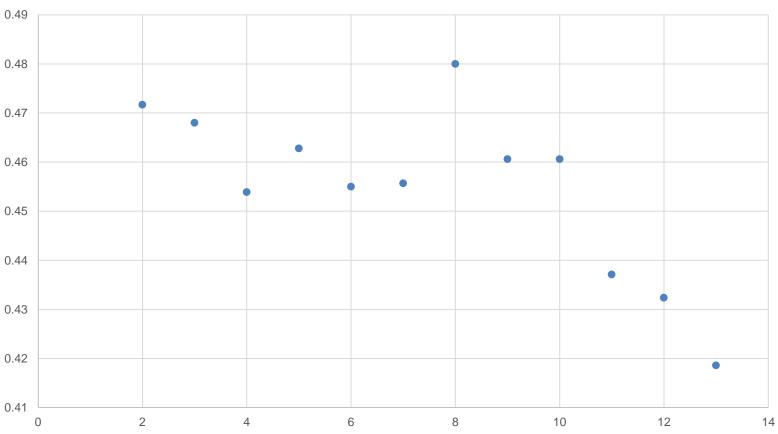
- Cost Analysis Methodology: Renate Egan, Martin Green, Rhett Evans, Anita Ho-Baillie, Paul Basore (NREL/DOE), Michael Woodhouse (NREL)
- Thin film Si Sergey Varlamov
- **Perovskite on Glass:** Anita Ho-Baillie, Trevor Young, UNSW perovskite group, Monash Uni perovskite group.
- Perovskite R2R: Doojin Vak, Mei Gao and CSIRO printing group
- c-Si: Stuart Wenham, Hydrogenation Group, SIRF, Budi Tjahjono (Sunrise)

Interested in analyzing your technology?

- Australian Centre for Advanced Photovoltaics (ACAP)
- n.chang@unsw.edu.au



Acknowledgements


This Program has been supported by the Australian Government through the Australian Renewable Energy Agency (ARENA).

Responsibility for the views, information or advice expressed herein is not accepted by the Australian Government.

China wholesale spot price US\$/W (last 12 months) - PVXChange

44