

Grand Challenge on Climate Change

Energy Transitions

Muriel Watt, Annie Ngo, Ben Elliston – ITP Renewables Iain MacGill - UNSW

Global Emissions

Source: National Oceanic and Atmospheric Administration

The legacy of the last 100 years

- Energy responsible for > 2/3 of GHG emissions
 - High reliance on fossil fuels
- Geopolitical and centralised power
 - Large global fossil fuel supply chains
 - Strong resistance to change
- Highly inequitable:
 - Developed countries >200 GJ/person/year
 - Developing countries <20 GJ/person/year
- Technology, infrastructure, governance not suited to 21st century energy systems

Emissions must drop to net zero by 2050

How do we make the Transition?

- Fuel change transitions
 - displacement of fuels
- Technology driven transitions
 - changes in energy technology
 - increased efficiency
- Transitions in market design and institutions
 - in part to facilitate the other transitions

What can we agree upon?

- A carbon price, so emissions are factored into investment and asset decisions
- Significantly reduced reliance on coal and oil
- A range of clean energy technologies, with renewables key
- A significant role for energy efficiency
- Market mechanisms and technologies to manage high penetration variable renewables
- More engaged and informed energy users
- Integrated planning across:
 - energy, water and other services
 - liveable, affordable and healthy living environments
 - urban planning and transport to prevent lock-in to inefficient systems

Where there is still some debate?

- The future role for carbon capture and storage and nuclear
 - both have struggled with cost and deployment
- The role of gas
- The role of hydrogen as another energy vector
- The extent of the challenges posed by integration of variable renewables
- The extent of changes needed in energy market design
- Future cost reductions for different renewable energy technologies

Possible Australian Transitions

Fuel change transitions	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Phase out of brown coal										
Renewables replace fossil fuels										
Gas displaces coal										
Synthetic hydrocarbons replace fossil fuels for transport										
Biofuels and Hydrogen replace fossil fuels for transport										
Technology driven transitions	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Energy efficiency reduces energy demand										
Distributed generation replaces centralised generation										
Energy storage used more widely										
Electricity replaces hydrocarbons for transport										
Load management to balance energy supply and demand										
Smart cities, buildings, devices										
Carbon capture and storage added to coal plant										
Transitions in market design and institutions	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Reform of energy markets										

Sustainable Energy Futures

- More renewable
- More electric
- More distributed and consumer driven
- More digital
- More flexible
- More global and more local

A way forward for Australia

- We can have affordable, secure, environmentally sustainable energy
- Reduce emissions fast we have the perfect opportunity
 - Aging coal fleet, reducing oil stocks, loss of manufacturing, congested cities, sparse rural populations, vast renewable energies
- Australia has the responsibility to assist other countries
- Good governance crucial
 - Markets are a means not an end
 - Political processes not well suited
- Don't use uncertain climate change impacts to delay action!
- Coherence between domestic policy and global agreements
- Transition must facilitate shared prosperity and equity

Equity Metrics

