2 for the price of 1

Murad J Y Tayebjee
Outline

• What is singlet fission?
• The potential of singlet fission technologies
• The effect of chromophore coupling on singlet fission rates
• Observing intermediate states in the singlet fission process using magnetic resonance spectroscopy
Molecular states of interest

\[S_0 \quad T_1 \quad S_1 \]

\[\text{LUMO} \quad \text{HOMO} \]

\[m_s = 0 \quad m_s = 1 \quad m_s = 0 \]
Singlet Fission

- Absorption
- Singlet fission annihilation
- Inter-system crossing (slow)
- Spin-forbidden emission non-radiative decay (slow)
Molecules

Part 1: The Potential of Singlet Fission for Photovoltaic Devices
Exciton fission solar cells

- Exciton fission threshold, E_b
- Band gap, E_r
- Fission can occur in
 - Bulk inorganic semiconductors (impact ionization)
 - Low-dimensional inorganics
 - Rare-earth materials
 - Organic molecular crystals
Exciton fission solar cells

• Exciton fission threshold, E_b
• Band gap, E_r
• Fission can occur in
 – Bulk inorganic semiconductors (impact ionization)
 – Low-dimensional inorganics
 – Rare-earth materials
 – Organic molecules

E_F E_r

E_b

eV

CB E_r

VB
Entropy as a driving force

\[\Delta U = 2E_r - E_b \]
\[\Delta A = \Delta U - T\Delta S = 0 \]
\[\Delta U = T\Delta S \]
\[T\Delta S = 2E_r - E_b \]

That is: \(E_b/E_r \) can be less than 2 for \(T>0 \)

Tayebjee et al. JPCL, 2012, 3, 2749-2754.
Detailed Balance Limiting Efficiency

![Graph showing energy levels and efficiency](image)

More realistic device limiting efficiencies

Conclusions and Progress

• Tetracene on silicon is theoretically well-matched to give high device efficiencies
• In principle, a tetracene layer could be applied on top of a silicon cell to enhance the overall efficiency. (Initially proposed by Dexter in 1979)
• However triplet injection/dissociation at the tetracene/silicon interface has not been achieved yet:
 – Devices have been made by several groups, but none show a >100% quantum yield in the EQE spectrum
• More work needs to be done to understand organic/inorganic interfaces.
Part 2: Singlet Fission in TIPS-Pentacene Nanoparticles
Why nanoparticles?

- Nice systems to study
 - Solution state
 - Have some control over size
 - Have some control over morphology
- Device fabrication by spin-coating aqueous solutions
- TIPS-Pn 200% fission yield in thin films
Why nanoparticles?
Particle Characterization

Z-average: ~150 nm
PDI: 0.2

The Role of Interchromophore Coupling

Morphology

- Type II is similar to thin films where fission yield is 200%
- So we expect fission to be much more efficient in the Type II nanoparticles
Transient Absorption

Type I

![Type I Absorption Spectra](image)

Type II

![Type II Absorption Spectra](image)

Ultrafast Polarization Anisotropy

Photoluminescence Anisotropy Decay

- We expect there to be no decay in anisotropy in
 - Type II regions
 - Exciton traps
- We expect the anisotropy to decay when
 - Excitons migrate within Type I regions
 - Excitons migrate across crystalline grain boundaries
Ultrafast Time-resolved Photoluminescence

Summary of Nanoparticle Results

• Do to the slow crystallization process used to generate Type II nanoparticles, singlet exciton traps were generated and actually slowed the rate of fission
• Both short-range and long-range morphology play a role in the rate of singlet fission
Part 3: Singlet Fission in Bipentacenes
Quantitative Fission in Bipentacenes

\[
R = \text{NODIPS}
\]

\[n = 2: \text{BP2} \]
\[3: \text{BP3}\]

![Graph showing extinction coefficient vs. wavelength for different compounds](image_url)
Anomalous Triplet Lifetimes

Sanders, et al., *JACS*, 2015, 137 (28), pp 8965–8972
Transient Absorption: Triplet Yield but Not Triplet-Triplet Coupling

\[\begin{align*}
S_0 & \quad \text{Optical Pump} \\
S_1 & \quad \text{fs pulsed laser} \\
(TT) & \quad \text{Internal conversion} \\
\end{align*} \]

\[\begin{align*}
\text{Photo-induced absorption} & \quad \text{Optical Probe} \\
\text{Photo-induced bleach} & \quad \text{2T} \\
\end{align*} \]
Transient EPR: Nature of Spin States

S_1 (TT) Internal conversion

S_0

Optical Pump

Microwave Probe

$\sim 10 \text{ eV}$

$\sim 40 \mu \text{eV}$
The Spin Hamiltonian

\[\hat{\mathcal{H}} = \hat{H}_z + \hat{H}_{zf} s + \hat{H}_{ee} \]

- Zeeman:
 - Splits states with different \(m_s \) under an applied field
- Zero-field splitting:
 - Splits states of individual triplets
- (TT) interaction:
Zero Field Splitting of Triplet States

\[\hat{H} = \hat{H}_z + \hat{H}_{zfs} + \hat{H}_{ee} \]

\[|y\rangle \quad \downarrow 2E \quad |x\rangle \quad \downarrow D \quad |z\rangle \]

\[|0\rangle \rightarrow |-> \]

\[B_z (\text{mT}) \]

Zero Field Splitting of Triplet States

\[\hat{H} = \hat{H}_z + \hat{H}_y + \hat{H}_x \]

\[\begin{align*}
|^{5}(TT)_x \rangle & = \frac{1}{\sqrt{2}} (|xy\rangle + |yx\rangle) \\
|^{5}(TT)_y \rangle & = \frac{1}{\sqrt{2}} (|yz\rangle + |zy\rangle) \\
|^{5}(TT)_z \rangle & = \frac{1}{\sqrt{2}} (|xz\rangle + |zx\rangle) \\
|^{5}(TT)_a \rangle & = \frac{1}{\sqrt{2}} (|xx\rangle - |yy\rangle) \\
|^{5}(TT)_b \rangle & = \frac{1}{\sqrt{6}} (|xx\rangle + |yy\rangle - 2|zz\rangle)
\end{align*} \]

\[\begin{align*}
|^{3}(TT)_x \rangle & = \frac{1}{\sqrt{2}} (|yx\rangle - |xy\rangle) \\
|^{3}(TT)_y \rangle & = \frac{1}{\sqrt{2}} (|yz\rangle - |zy\rangle) \\
|^{3}(TT)_z \rangle & = \frac{1}{\sqrt{2}} (|xz\rangle - |zx\rangle) \\
|^{1}(TT) \rangle & = \frac{1}{\sqrt{3}} (|xx\rangle + |yy\rangle + |zz\rangle)
\end{align*} \]

 Applied Magnetic Field

\[
\hat{\mathcal{H}} = \hat{H}_z + \hat{H}_{zs} + \hat{H}_{ee}
\]

\[|^{5}(TT)_{+2}\rangle = |++\rangle\]
\[|^{5}(TT)_{+1}\rangle = \frac{1}{\sqrt{2}} (|0+\rangle + |0+\rangle)\]
\[|^{5}(TT)_{0}\rangle = \frac{1}{\sqrt{6}} (2|00\rangle + (++\rangle + |++\rangle)\]
\[|^{5}(TT)_{-1}\rangle = \frac{1}{\sqrt{2}} (|--\rangle + |0-\rangle)\]
\[|^{5}(TT)_{-2}\rangle = |--\rangle\]
\[|^{3}(TT)_{+1}\rangle = \frac{1}{\sqrt{2}} (|+0\rangle - |0+\rangle)\]
\[|^{3}(TT)_{0}\rangle = \frac{1}{\sqrt{2}} (|--\rangle - |++\rangle)\]
\[|^{3}(TT)_{-1}\rangle = \frac{1}{\sqrt{2}} (|--\rangle - |0-\rangle)\]
\[|^{1}(TT)\rangle = \frac{1}{\sqrt{3}} (|00\rangle - |++\rangle - |--\rangle)\]

Pulsed Laser/cw-EPR **BP3** at 40K
Identifying the Spin States

- Initial spectrum is the quintet triplet pair state
- The final spectrum could be due to three different transitions based on the magnetic field resonance positions
 - $^5(TT)_{±1} \rightarrow ^5(TT)_{±2}$ ✗
 - $^3(TT)_{±1} \rightarrow ^3(TT)_{0}$ ✗
 - $T_0 \rightarrow T_{±1}$ ✓

20 - 100 ns

$^5(TT)_0 \rightarrow ^5(TT)_{+1}$

5.1 - 5.2 μs

$T_0 \rightarrow T_{+1}$
Identifying the Spin States

- Rabi oscillation frequency can be used to identify spin multiplicity
 \[\Omega = \Omega_1 [S(S + 1) - M_S(M_S - 1)]^{1/2} \]
 - Nutation frequency ratio is expected to be \(\sqrt{3} = 1.73 \)
 - Experimental ratio is 1.69 ± 0.03
Dynamic Modelling

\[\frac{dp}{dt} = Mp \]
Pulsed Laser/cw-EPR BP2 at 80K
Weakly Coupled Triplets

- Initial spectrum is the quintet triplet pair state
- The final spectrum cannot be explained by $T_0 \rightarrow T_{\pm 1}$ transitions
- We require weak coupling to accurately fit the spectrum
- This is evidence for triplet pair state dissociates into two triplets rather than intersystem crossing (TT) \rightarrow $T_1 + S_0$

BP2 Nutation

- Rabi oscillation frequency can be used to identify spin multiplicity
- \(\Omega = \Omega_1 [S(S + 1) - M_s(M_s - 1)]^{1/2} \)
- Nutation frequency ratio is expected to be \(\sqrt{3} = 1.73 \)
- Experimental ratio is 1.5
- This departure from \(\sqrt{3} \) arises because the final triplets are weakly coupled
Temperature Dependent TA

BP2

- 300 K
- 240 K
- 180 K
- 120 K
- 80 K
- 50 K
- 30 K
- 7 K

BP3

- 300 K
- 240 K
- 180 K
- 120 K
- 80 K
- 50 K
- 30 K
- 14 K
- 7 K
Model Summary

- Isolated Triplet
- Decay

SF generated Triplet Pair

- Sensitization: $\tau = 25400$ ns
- Fission: $\tau = 270$ ns

Reaction Coordinate
Conclusions

• We observed quintets triplet-triplet-pairs in both BP2 and BP3
• The nature of the spin states involved in fission is much harder to understand using transient absorption – we can only observe the T₁ → Tₙ cross-section presented to the probe beam
• Using magnetic resonance and optical techniques in tandem allows for a full description of singlet fission
• Large triplet-triplet coupling is required for fission, but if it is too large triplet pairs may not be able to dissociate
Acknowledgements/Co-authors

SPREE
Dr Stephen Bremner
Kah Chan
Prof Gavin Conibeer
Dr Naveen Elumalai
Prof Martin Green
Dr Ziv Hameiri
Dr Shujuan Huang
Dr Rui Lin
Arman Mahboubi Soufiani
Dr Supriya Pillai
Dr Binesh Puthen-Veettill
Dr Tran Smyth
Dr Santosh Shrestha
Dr Ashraf Uddin
Dr Xiaoming Wen
Dr Matthew Wright
Dr Hongze Xia
Yi Zhang

Upconversion EPR
Prof Jan Behrends (FUB)
Prof Robert Bittl (FUB)
Dr Felix Kraffert (FUB)
BeJEL Lab (FUB + HZB)

Tetracene/Silicon Devices + Measurements
Martin Liebhaber (HZB)
Prof Klaus Lips (HZB)
Dr Jens Niederhausen (HZB)

Ultrafast Spectroscopy
Prof Timothy Schmidt (Chemistry, UNSW)
Dr Rowan MacQueen (Chemistry, UNSW*)
Dr Miroslav Dvorak (Chemistry, UNSW*)
Kyra Schwarz (U. Melb)
Prof Kenneth Ghiggino (U. Melb)
Bipentacenes
Sam Sanders (Columbia University)
Dr Elango Kumarasamy (Columbia University)
Prof Luis Campos (Columbia University)
Dr Matt Sfeir (Brookhaven National Labs)
Dr Dane McCamey (Physics, UNSW)
Funding

Australian Renewable Energy Agency
Australian Research Council
Australian Centre for Advanced Photovoltaics
CASS Foundation
Ian Potter Foundation
DAAD

[Logos of various funding bodies]