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• 2.5% is the share of freshwater. 

• Poor and small communities in remote areas.

• Conventional water treatments expensive (Large-scale) 

& requires elec. power.

• Over 1.8 billion people will be affected in 
remote areas. 

The global potable water scarcity

Water scarcity prediction in 2025

The challenges of water scarcity

• Solar Energy  is a widely available & Passive Solar Stills would 
be the best option (Small-scale solar assisted desalination)

What is the solution

Introduction: The Problem
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• Simple distillation technique,

How it works & what’s Advantages

What’s the issue with the process

• Sun obstruction caused by distillate droplets.  

• Periodic cleaning and refill required.  

• Directly supplied by the Sun,

• Works with evaporation & condensation. 

Passive Solar Still (PSS), Solar Thermal Distillation

• Low Evap-Cond rate due to large bulk water. 
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Lit. review: Design Improvements of PSS
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Design 
Improvements 

Categories 
Solar Insolation  

Collection
• Receiver Design

Heat Absorption
• Basin Design

Heat Storage
• Basin/wall Design

Vapour 
Condensation 
• Condenser Design



Lit. review: Design Improvements of PSS

4/30Fig. Various design improvements and modifications on PSS discussed in the review article (Mohsenzadeh et al., 2021)
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Design Improvements: Basin incorporated with PCM, etc. 
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Design Improvements: Ext. Condenser Design
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Design Improvements: Condensing Cover Geometry
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Research Meth   d: Steps taken 
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Literature review
• Initial design 
• Performance Est. 

EES, TRNSYS 
Simulation 

• Performance 
results 
• Modifying design

Performance 
analysis  
• Variables behaviour
• Climate change

Experimental setup
• Validation of Simulation

Step 1 Computer modelling 
• Developing Theoretical model
• Sizing the components

Step 2

Step 4

Step 3

Step 5

Development
•Conceptual design
• Try-and-error



Developing trans. model of sys. considering the aspect ratio of evap. chamber

Computer Modelling: PSS Transient Thermal Model
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Fig. Schematics of (a) passive solar still with heat fluxes, (b) the equivalent thermal circuit of the system
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The features of the developed model: (Mohsenzadeh et al., 2021)

Computer Modelling: PSS Transient Thermal Model

• transient model instead of S.S or quasi S.S.

• chamber aspect ratio and thermal inertias considered.

• Significance of thermal inertias in performance explored.

• The profile of Transmissivity applied instead of constant value.

• The effect of distillate on the transmissivity of the cover was 
examined.

• The larger the aspect ratio of the chamber, the higher the daily 
water yield.
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• Droplets Obstruction effect

• Validation of HT model

• Reference PSS. 

Focuses 

Experiments: RPSS experiment series (1)
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• Relative humidity not considered in avail. models

• Using  theoretical approach to develop the general form

• Setting up experiments to produce data 

• Applying a Regression analysis to calculate constants 

• The dimensions of the Evap. Camber is not considered

The necessity of developing new model

The process taken to develop correlation 

Computer Modelling: New HT Correlation Develop. 
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Fig. Schematic of experiment designed for low humidity 
single-slope single-basin solar still.
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• Aspect Ratio of chamber

Experiments: LHPSS experiment series (2)

• Low vacuum in chamber 

Focuses 
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• Rayleigh number, 

• relative humidity, 

• and the aspect ratio of the evaporation chamber (Mohsenzadeh et al., 2022)

Semi-empirical correlation estimating convection & evaporation inside solar still 
using:

 0.15 0.33 0.080.0732 ( ) ( ) ( ) , .PrRNu A Ra Ra Grφ′ ′ ′= =

Mohsenzadeh et. al Eq:

Computer Modelling: New HT Correlation Develop. 
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Results: The obstruction effect of droplets 

Fig. The variation of the effective transmissivity of the glass cover during the day and compares it with plexiglass at ref. 
(Mohsenzadeh et al., 2021)

• 21% reduction in transmissivity

• Initial Transmissivity at 0.87.

• Down to 0.69 on average.
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Results: Performance analysis: Depth of water 
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Fig. The variation of the daily water yield and the thermal efficiency under different depths of bulk water in PSS.
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Results: Performance analysis: Aspect Ratio

Fig. The variation of the daily water yield and the thermal efficiency under different Aspect ratios of the 
chamber. (Mohsenzadeh et al., 2021)
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Confidential – Subject to copyright, patent pending 

System Development : Novel Solar Desalination Sys. 

Hemispherical Floating Self-Cleaning Solar Still 21/30
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Multi layer tubular basin for experimental trial
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Fig: Temperature on different comp. of FHSS and RPSS setups.

Temperature outputs of multi layer basin
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Experiments: Indoor Salt-rejecting experiment (3)

Confidential – Subject to copyright, patent pending 



Experiments: FHSS experiment series (4)



• Tests conducted on:

• Summer, December 2020 - March21 (COVID 3rd stage)

• at Heidelberg Campus Unimelb.

• Running tests between 9:00 am - 5:00 pm. 

• with 2 hrs preparation, 1 hr wrapping up. 
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Results: Daily Water Yield of FHSS v.s RPSS (Exp.)  

Test condition: Melbourne, summer, Clear sky with the peak insulation rate of 990 W m-1 , ambient temperature 30 ℃, 
wind velocity of 4 km h-1, and Humidity level at 34%, salt concentration 3% wt.

• 64% increase in water yield

• 4.3 L m-2 d-1 v.s RPSS with 2.3 L m-2 d-1

• 36%  Distil. Eff.  v.s 18 % for RPSS
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Results: Yield & Distillation Eff. of FHSS v.s RPSS (Exp.)  

Test condition: Melbourne, summer, Clear sky with the peak insulation rate of 990 W m-1 , ambient temperature 30 ℃, 
wind velocity of 4 km h-1, and Humidity level at 34%, salt concentration 3% wt.
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Results: Life Cycle Cost Analysis of FHSS v.s RPSS

• Unit Water Cost of FHSS:  4.7 US ¢ L-1

• Total cost of the FHSS module:  ~ 210 USD

• 46% reduction in Life-Cycle Unit Water
28/30



• A daily rate of 4.3 L m-2 day-1 with the distillation efficiency of 35.6 % during summer in 
Melbourne, Australia. 

• 64% increase, in daily water yield compared to RPSS.

• Life cycle cost of water (LCCW) is estimated at 4.7 US ¢ L-1 , 46% reduction compared to 
RPSS.  

• Efficient Multi-layer basin with adequate rate of salt-rejecting and capillary water intake  

• This system is expected to have a lower maintenance cost as no need to a water pump and 
no warrant as much periodic cleaning. 

Key Outcomes:

Conclusion 
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Future considerations :

Conclusion 

• The creation of water droplets on the cover still need to be addressed( by 
redirecting into condensation coils 77%).

• Applying a long-term lasting Anti-Fog / Water Repellent coating on the surface.  

• Furthermore, The heat loss via the wick fabric into the bulk water needs further 
study to avoid heat loss to the bulk water instead of pre-heating wick fabric. 
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List of Publications, Presentations

− Development and exp. analysis of an innovative self-cleaning low vacuum floating solar still for low-
cost desal. Energy Conversion and Management. (2021)

− A review on various designs for performance improvement of passive solar stills for remote areas. Solar
Energy. (2021)

− Development and validation of a transient model for a passive solar still considering the aspect ratio of
the evaporation chamber. Solar Energy. (2022)

− A semi-empirical correlation estimating convection and evaporation inside a single-slope passive solar
still... Applied Thermal Engineering. (2022)

Journal Papers: 

− An innovative Cost-effective floating solar still with integrated condensation coils. Asia-Pacific Solar
Research Conference (APSRC) (16-17 Dec. 2021)

Conference Presentations and Peer reviewed extended abstract: 
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