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Introduction: The Problem
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The global potable water scarcity P "

e 2.5% is the share of freshwater.

* Over 1.8 billion people will be affected in
remote areas.

The challenges of water scarcity

« Poor and small communities in remote areas.

* Conventional water treatments expensive (Large-scale)
& requires elec. power.

Whatisthe solution

* Solar Energy is a widely available & Passive Solar Stills wou
be the best option (Small-scale solar assisted desalination)

Water scarcity prediction in 2025



%% Passive Solar Still (PSS), Solar Thermal Distillation
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Simple distillation technique, Glass cover

Solar radiation Distillate \

* Directly supplied by the Sun, \ {

* Works with evaporation & condensation. _
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* Low Evap-Cond rate due to large bulk water. <!
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* Sun obstruction caused by distillate droplets. F222580
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* Periodic cleaning and refill required.
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Lit. review: Design Improvements of PSS
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Design

Improvements
Categories

Vapour
Condensation

* Condenser Design

Solar Insolation

Collection

Receiver Design

Heat Storage

» Basin/wall Design

Heat Absorption

¢ Basin Design
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Lit. review: Design Improvements of PSS
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Design improvements of
passive solar still
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Design Improvements: Ext. Condenser Design
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Design Improvements of PSS: Suitable design of comp.
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Literature review

* Initial design

* Performance Est.

Research Meth« d: Steps taken

Development

- *Conceptual design
* Try-and-error

Computer modelling

* Developing Theoretical model

* Sizing the components

Experimental setup

« Validation of Simulation

EES, TRNSYS
Simulation

» Performance
results

* Modifying design

Performance
analysis

* Variables behaviour
* Climate change
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Computer Modelling: PSS Transient Thermal Model
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Developing trans. model of sys. considering the aspect ratio of evap. chamber
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Fig. Schematics of (a) passive solar still with heat fluxes, (b) the equivalent thermal circuit of the system
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Fig. Schematics of the control volume around (a) the glass cover, (b) bulk water, and (c) basin
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Computer Modelling: PSS Transient Thermal Model
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The features of the developed model: (ionsenzadgen et ai, 2021)

Evaporation
Chamber

e transient model instead of S.S or quasi S.S. Glass cover

Solar radiation Distillate \

Water \

High-salinity Insulation
water drainage layer

e chamber aspect ratio and thermal inertias considered.

e Significance of thermal inertias in performance explored.

Potable
water Tank

e The profile of Transmissivity applied instead of constant value.

e The effect of distillate on the transmissivity of the cover was
examined.

e The larger the aspect ratio of the chamber, the higher the daily
water yield.
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Experiments: RPSS experiment series (1)
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i
'I"_!

Focuses

e Validation of HT model

* Droplets Obstruction effect

* Reference PSS.

(d)
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The necessity of developing new model

e Relative humidity not considered in avail. models

* The dimensions of the Evap. Camber is not considered

The process taken to develop correlation

e Using theoretical approach to develop the general form
* Setting up experiments to produce data

* Applying a Regression analysis to calculate constants
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Solar radiation Glass cover ‘X
U W
v
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U N
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\
Potable _H \ \ Bulk water
Water ¢ | \ \
\ \
e
B e
=

Computer Modelling: New HT Correlation Develop.
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N
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et W Bt
R ratrag [ Lt at et
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Rl e et Y

High-salinity <]
water drainage

Insulation layer <—

Fig. Schematic of experiment designed for low humidity
single-slope single-basin solar still.
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Experiments: LHPSS experiment series (2)

Focuses

* Aspect Ratio of chamber

 Low vacuum in chamber
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Computer Modelling: New HT Correlation Develop.
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Semi-empirical correlation estimating convection & evaporation inside solar still
using:

* Rayleigh number,
* relative humidity,

* and the aspect ratio of the evaporation chamber (vohsenzadeh et al., 2022)

Mohsenzadeh et. al Eq:

Nu =0.0732(A4,)"" (Ra")"" ()" , Ra'=Gr'.Pr
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Results: The obstruction effect of droplets
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Fig. The variation of the effective transmissivity of the glass cover during the day and compares it with plexiglass at ref.
(Mohsenzadeh et al., 2021) 18/30
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Fig. The variation of the daily water yield and the thermal efficiency under different depths of bulk water in PSS.

Results: Performance analysis: Depth of water
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Results: Performance analysis: Aspect Ratio
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Confidential — Subject to copyright, patent pending

System Development : Novel Solar Desalination Sys.
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Multi layer tubular basin for experimental trial
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Experiments: Indoor Salt-rejecting experiment (3)
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Experiments: FHSS experiment series (4)
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* Tests conducted on: | 'n'“n'g\\\wm Hm u

« Summer, December 2020 - March21 (COVID 3 stage)

* at Heidelberg Campus Unimelb.
* Running tests between 9:00 am - 5:00 pm.

* with 2 hrs preparation, 1 hr wrapping up.
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Results: Daily Water Yield of FHSS v.s RPSS (Exp.)
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(Mohsenzadeh et al., 2021)
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Test condition: Melbourne, summer, Clear sky with the peak insulation rate of 990 W m, ambient temperature 30 °C,
wind velocity of 4 km h1, and Humidity level at 34%, salt concentration 3% wt.
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https://www.sciencedirect.com/science/article/abs/pii/S0038092X21008495
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Table 1. List of the raw materials cost and labour cost (in USD) for the FHSS system.

Results: Life Cycle Cost Analysis of FHSS v.s RPSS

Table 2. The unit water cost analysis breakdowns (in USD) for FHSS and RPSS.

Components Specifications Cost (USD)
Hemispherical Cover Clear Acrylic (700 mm Dia.) 68.00
Hydrophilic fabric wick Cellulose, Zorb 11.00
Expanded porous foam Tubular EVA (28 mm Dia.) 6.00
Condensing coils Annealed Copper (3/8” Dia.) 32.00
Air pump 15 W, 20 L min™ 15.00
Connector and clamps Stainless Steel 3.50
Pipeline Polyvinyl 5.00
Framework Polyethylene tubes 12.00
Labour 15 hrs (rate of $4 per hour) 60.00
Total costs 212.50

* Unit Water Cost of FHSS: 4.7 US ¢ L1

e Total cost of the FHSS module: ~ 210 USD

* 46% reduction in Life-Cycle Unit Water

Parameter RPSS FHSS
Operation life, a 10 8
Interest rate, % 4.0 4.0
Capital cost, S 249 213
Net Aperture area for solar, m? 0.48 0.35
Salvage value, $ 27 64
Capital recovery factor 0.12 0.15
Sinking-fund factor . | 0.08 0.11
Annual Salvage 'Valuﬂe, S 2.25 6.95
First annual cost, $ 30.70 31.64
Annual maintenance cost, $ 4.60 1.58
Annual cost, $ 33.06 26.27
Average daily water yield, L 1.03 1.52
Annual yield (Ave. daily yield x 365), L 375.95 554.80
Unit water cost, ¢ L™ 8.8 47

28/30



Conclusion
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Key Outcomes:

* A daily rate of 4.3 L m2day* with the distillation efficiency of 35.6 % during summer in
Melbourne, Australia.

64% increase, in daily water yield compared to RPSS.

Life cycle cost of water (LCCW) is estimated at 4.7 US ¢ L1, 46% reduction compared to
RPSS.

Efficient Multi-layer basin with adequate rate of salt-rejecting and capillary water intake

This system is expected to have a lower maintenance cost as no need to a water pump and
no warrant as much periodic cleaning.

29/30



Conclusion
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Future considerations :

* The creation of water droplets on the cover still need to be addressed( by
redirecting into condensation coils 77%).

* Applying a long-term lasting Anti-Fog / Water Repellent coating on the surface.

* Furthermore, The heat loss via the wick fabric into the bulk water needs further
study to avoid heat loss to the bulk water instead of pre-heating wick fabric.

30/30
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A review on various designs for performance improvement of passive solar | &
stills for remote areas

Milad Mohsenzadeh, Lu Aye , Philip Christopher

Renewable Energy and Energy Efficiency Group, Faculty of Engineering and Information Technology, The University of Melbourne, VIC 3010, Australia

ARTICLE INFO ABSTRACT

Keywords: Potable water scarcity is one of the major issues that has been affecting millions of lives. It became serious in
Solar still underprivileged remote communities that are unable to afford conventional water supply and treatment svstems.
Desalination

Passive solar desalination systems as a cost-effective option for water supply are becoming more feasible in
remote areas. However, low water vield and poor reliability are the main deficiencies that need improvement.
This article reviews recent studies conducted on performance improvement and water cost reduction of passive
solar stills associated with new designs and modifications appropriate for remote areas to identify the most
effective designs. The individual effect of each component’s design on performance parameters (water yield,
thermal efficiency, and unit water cost) has been reported and discussed. The design specifications and outcomes
of studies were reviewed and presented in tables to give a broad view of activities in the area, and to provide
future studies with data for validation purposes. This article shows knowledge gaps and opportunities for future
research through a distinet classification of studies to shape a clear roadmap on the development of passive solar
stills. The most effective designs of components with respect to their application in remote or disaster-stricken
areas with no access to power infrastructure were determined. In addition, issues around the structural design
complexity and operational reliability associated with new designs were presented.

Design enhancement
Water cost

Remote area
Review
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Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman
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Development and experimental analysis of an innovative self-cleaning low  [%&=
vacuum hemispherical floating solar still for low-cost desalination

Milad Mohsenzadeh, Lu Aye , Philip Christopher

Renewable Energy and Energy Efficiency Group, Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of
Melbourne, Vic 3010, Australia

ARTICLEINFO ABSTRACT

Keywords: In this article, a novel floating salt rejecting solar still with a low vacuum condition on the evaporation chamber
Floating solar still is developed and the performance is experimentally investigated. The new desizn adopts solar heat localization
Interfacial evaporation for interfacial evaporation and capillary water eirculation to improve the evaporation rate and prevent the basin
surface from residual salt accumulation. The basin is made in tubular structure composed of multi layers of
Remote areas porous foam and hyvdrophilic cellulose fabric for improved capillary water supply. The solar still consists of an
Life eycle cost external condensing coils coupled with the basin structure. It completely submerges into the water while the

solar still is floating in the saline water reservoir (e.g. oceans). This enables the natural cooling of the condensing

coils which increases the condensation rate. A low-cost hemispherical clear acrylic cover is used to capture the

Capillary water supply
Self-cleaning

solar radiation from all directions on the basin. The system performance was examined under different scenarios.
The system was found to generate distilled water at a daily rate of 4.3 L m~2 d ! with the distillation efficiency of
35.6% during summer in Melbourne, Australia. The life cycle cost per litre of drinking water generated by the
solar still is calculated at 4.7US ¢ L~ ! which is substantially lower than conventional solar stills. This system is
expected to have a lower maintenance cost as it does not require as much periodic cleaning. The new svstem
developed is a feasible alternative to address the water security challenge for water-stressed communities at
remote areas or disaster-stricken areas with no access to an energy infrastructure.
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