Investigating the effects of a changing climate on siting of renewables

Dr Merlinde Kay
Energy Meteorology

• Energy Forecasting investigates how climate and weather influence the energy sector. My research group uses the connection between energy and meteorology to develop models that lead to promotion of cost-effective and sustainable weather and climate risk management strategies for the Energy industry
 – Resource assessment
 – Siting and planning
 – Forecasting and optimisation
 – Assist in technology design
 – Building optimisation
Ongoing Projects at UNSW

- Utilising weather models for building energy management optimisation
- Wind forecasting and assessment
- Hybrid forecasting and optimisation of battery storage
- Distributed Forecasting
- Aerosol modelling/forecasting for CST
Characterising Variability

• Analysing weather data and insolation
 – Identifying weather patterns that correlate to periods of high and low power production
 – Predictability of these weather events at appropriate levels of aggregation
Total change in DNI from 1990-2012

School of Photovoltaic and Renewable Energy Engineering
Where should new wind and solar energy sites be located to avoid climate and financial risk?

• The aim of this project is to minimise the risk in investing in potential wind and solar energy sites.
• How will climate change affect the choice of future renewable sites?
• Where would investments be most or least risky? Can we identify sites that will remain optimal and economically viable in 20 years’ time as weather and climate change?

A/Prof Jason Evans, Dr Abhnil Prasad and Prof Andy Pitman
Regional Climate Projections

- We use a regional climate ensemble and separately downscale four global climate models (MIROC3.2-medres, ECHAM5, CCCMA3.1, and CSIRO-Mk3.0) using the Weather Forecasting and Research (WRF) modeling system version 3.3.

- This created a 12-member ensemble for three time periods:
 - present (1990–2009),
 - near future (2020–2039),
 - far future (2060–2079). All future simulations used the SRES A2 emissions scenario.

Extractable Wind Power (EWP)

- The amount of power that can be extracted from wind turbines – 80m hub height
Extractable Wind Power (EWP)
Extractable Wind Power (EWP)

- The amount of power that can be extracted from wind turbines – 80m hub height
Levelised Cost of Electricity (LCOE)

- Minimum cost at which a generator must sell the produced electricity in order to break even*

Comparison between Existing and proposed sites

Existing wind farms

Proposed wind farms

LCOE ($/MWh)

NSW VIC SA NQLD CQLD QLD WA TA

UNSW AUSTRALIA
School of Photovoltaic and Renewable Energy Engineering
Future Projections

- Future generation traces for solar

Thank You