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[1] 

NREL Certified I-V curve 
Published tandem architecture 



Efficiency 

[2] 

Jsc almost 20 mA/cm2 



Justification for OPV 

• Solution phase processing for all layers 

• High throughput fabrication – scalability 

• Low embodied energy 

• Flexible and lightweight 
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• Solution phase processing for all layers 

• High throughput fabrication – scalability 

• Low embodied energy 

• Flexible and lightweight 
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Life Cycle Analysis for OPV 

Sputter coated ITO causes 

unbalanced inventory 

Calculated share of embodied energy 
[5] 



Life Cycle Analysis for OPV 

Indium free, thin silver semitransparent front electrode. 

Prepared by slot-die coating 

[6] 



Life Cycle Analysis for OPV 

Removing ITO leads to significantly more balanced inventory 
[6] 



Life Cycle Analysis for OPV 

Future work to reduce EPBT: 

Feasible assumptions: 

- Decreasing layer thickness 

- Increasing substrate width 

- Increasing geometric fill factor 

Challenging assumptions: 

- Higher efficiencies 

- Increasing lifetimes 

- Materials recycling (silver) 

 

 

[6] 



Life Cycle Analysis for OPV 

Remove ITO, achieve all “feasible” assumptions,  EPBT ~ 1 month 

[6] 



Deployment of OPV: Solar Park 

Processing of OPV modules 

Printing of front silver grid 

Rotary screen printing of 

front PEDOT:PSS 

 

Printing of back silver 

electrode 

Slot-die coating of ZnO 
Slot-die coating of 

P3HT:PCBM 

Rotary screen printing of 

front PEDOT:PSS 

700m foil (147,000 cells) with 

100% technical yield 

Fabrication speed of 1m / min 
[7] 



Deployment of OPV: Solar Park 

Final product 

6 lanes x 100m. 305 mm width. 

Installation rate 100 m/min. Estimated possible rate of 300 m/min. 
[7] 



Video: Installation of OPV solar park 



Deployment of OPV: Solar Park 

Reduction in performance largely related to FF and Voc 

I-V curve of entire 

installation 

[7] 



Deployment of OPV: Solar Park 

Energy payback time of components 

EPBT = 180 (Southern Spain) Or EPBT = 277 (Denmark) 

[7] 



Deployment of OPV 

Low density plastic tubes, 

connected with ropes. 

System efficiency of 0.61%. 

Due to rough handling during 

installation 

[8] 



Deployment of OPV 

Helium filled balloon, 

 Dimensions: 4 m x 5 m. 

Balloon filled with 16 m3 of Helium to 

support 8 kg 

Clearly demonstrates unique 

properties of OPV! 
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Deployment of OPV 

Breakdown of cumulative energy demand required for 

every component in the BOS for each system  
[8] 



Solution Processed Perovskite Solar Cells 

Perovskite solar cell processed on a flexible PET substrate 

[9] 



Video: Solution based roll coating of a Perovskite layer 



Late mail: Investigation of slot-die coating parameters 

[10] Investigated N2 gas quenching 



Late mail: Investigation of slot-die coating parameters 

[10] 

Comparison of slot-die / spin coating 



Challenges faced: Low efficiency 

Low efficiency largely related to Jsc and FF 

Requires  synthesis of new polymers which can: 

• Have increased spectral breadth 

• Improved charge carrier dynamics to increase EQE 

• For tandem, require polymers with precisely complementary absorption 

windows 

 

However, must also be compatible with printing and coating techniques. 



Challenges faced: Stability 

Significantly lower environmental stability than silicon solar cells. 

Mechanisms reducing the stability of OPV devices: 

Chemical: 

- O2 / H2O induced oxidation of organic components 

- O2 / H2O induced oxidation of electrodes 

- Water degradation of PEDOT:PSS (buffer layer) 

Mechanical: 

- Changes in photoactive morphology 

- Delamination at weak interfaces 

- Mechanical stresses for flexible substrates, particularly when different 

layers have different thermal expansion coefficients 

 

 



Challenges faced: Stability 

Inverted device structure 

Silver replaces aluminium as metal electrode 

Reverse the direction of charge flow through the device 

[11] 



Challenges faced: Stability 

Provides standard protocols established 

for different testing methods 

Undertake and report inter-laboratory 

‘round robin’ tests 

[11] 



Research at UNSW 

Photoactive layer 

Electron transport 

layer 



ZnO buffer layer 

Bare ITO 0.02 g/ml 

0.20 g/ml 0.05 g/ml 

[13] 



ZnO buffer layer 

[13] 

FTIR spectra 

C=O 
C-H 

Increasing the annealing 

temperature improves the 

conversion of zinc acetate 

to zinc oxide 

Also shown in XPS 

analysis, reduction 

in the carbon 

content of the film 



ZnO buffer layer 

[13] 

SEM images 



Ternary blend organic solar cells 

[14] 



Ternary blend organic solar cells 

Combine two polymers in the bulk 

heterojunction active layer 

Ratio of P3HT:Si-PCPDTBT 

set to 7:3 



Ternary blend organic solar cells 

Vary ratio of total polymer 

(P3HT+Si-PCPDTBT) to 

PC71BM 

XRD suggests threshold 

polymer concentration is 

required for semi-

crystalline film. 



Ternary blend organic solar cells 

Optimum performance 

achieved with a balance 

between polymer and 

fullerene 



Ternary blend organic solar cells 

Incorporating small fraction of 

P3HT caused increase  in 

polymer domain size 

Si-PCPDTBT:PC71BM host system 

[15] 



Ternary blend organic solar cells 

Slight increase in Jsc 

[15] 



Conclusion 

- Solution processed roll-to-roll coated OPV devices present multiple 

unique advantages, including scalability, low embodied energy, and flexibility. 

- LCA analysis suggests the embodied energy of OPV modules could be 

extremely low. 

- Multiple demonstration have indicated the viability of solution processed 

OPV modules. 

- Multiple key challenges, such as low efficiency and poor environmental 

stability, must be addressed before large scale deployment can become a 

reality. 

- Perovskite solar cells may be able to overcome some of these key 

challenges. 
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