

"Recent trends in photovoltaics"

Martin Green, UNSW Sydney

Part 1: "Big picture" developments

- "solar is now the cheapest source of electricity in most countries"
- "now offer some of the lowest cost electricity ever seen"

Part 2: PERC takes over the industry

UNSW PERC rules!

LONG

Process Optimization of Ingot Pulling Technology

High speed ingot pulling technology

Pulling speed increased 80%+ since 2013

Mono Wafer Cost Reduction

Production line automation

- Automatic control system
- Automatic loading technology
- · Automatic edge cleaning system
- In 2014, LONGi took the lead in using diamond wire slicing technology in the production of photovoltaic silicon wafers and achieved 100% diamond wire slicing in 2015.
- Continuous reduction of diamond wire diameter reduces kerf loss during slicing process.
- High-speed slicing significantly improves the production efficiency of silicon wafer.

+40%

Number of waters from square rods

Slicing speed

2014 to present

PERC offers new functionalities: Cheap bifacial cells!

PERC : Cheap bifacial cells! Half-cut cells, shingling

PERC : Cheap bifacial cells! Half-cut cells, shingling (now tiling)

PERC : Cheap bifacial cells! Half-cut cells, shingling

PFRC : Chean hifacial cells! Half-cut cells, shingling

Size trend of silicon wafer in semiconductor and PV industry

INNOVATIVE PACKAGING CONCEPT

Maximizing the space utilization of containers, 12% saving in transportation costs comparing to the traditional packing.

INNOVATIVE PACKAGING CONCEPT

SPACE LOADING CAPACITY PER CONTAINER +12%

Module

670W

373860W

Trinasolar

Trinasolar

Part 3: What comes after PERC?

Contending technologies

TOPCon

IBC

PERC, n-PERT

HJT

UNSW reported first TOPCon solar cell (1983)

Contending technologies

TOPCon

IBC

PERC, n-PERT

HJT

metal

Advantage

n-type CZ wafers can be better quality *Gives:*

- . higher efficiency
- . lower temperature coefficients
- . better bifacial response

PERC, n-PERT

TOPCon

IBC

HJT

meta

■ c-Si n-type Mono

Thin-film

PERC, n-PERT

TOPCon

SHJ

What comes after PERC?

Switch to n-type wafers??

PERC, n-PERT

tunnel axide

IBC

n+ poly-Si

Grass greener on other side?

2. Problems from mass production line

1) Ingot's lifetime

(resistivity 2-4ohm.cm2)

- Long lifetime ingot represents good quality wafer, which brings high efficiency solar cell.
- Wafer quality should be controlled, even for N-type wafer

2. Problems from mass production line

1) Ingot's lifetime

PV Po

ltom	Lliab	1	A.,
oly Silicon Weekly Spot Price	PV	insig	hts

Item	High	Low	Average
PV Grade PolySilicon (9N/9N+)	17.400	10.500	15.630
2nd Grade PolySilicon (6N-8N)	9.500	8.000	8.470
N Mono Grade PolySilicon in China (12N/12N+)	17.400	17.050	17.240

Unit: USD/Kg Last Update: 2021-03-17 more

2. Problems from mass production line

1) Ingot's lifetime

■ For HJT, thinner wafer is more important for cost reduction

risen

HJT <130um

Part 4: What comes after PERC? (long term)

What comes after PERC? – longer term

Supercharged tandem PERC?

What comes after PERC? – longer term

What comes after PERC? – longer term

Like silicon, ? needs to be abundant, non-toxic, stable, efficient (>20%)

	Perovskite	1	X	X	1
	Organics (OPV)	1	1	X	X
II-VI {	Cu ₂ Zn(Sn:Si)S ₄	1	1	1	X
	Cu(In:Ga)(S:Se) ₂	X	?	1	X
	(Cd:Zn:Mg)(Se:Te)	X	X	√	?
	(AI:Ga:In)(As:P)	X	?	1	?

What then? – the end for silicon?

Source of global CO₂ emissions

Recent studies suggest so!

Years

Storage – Off-peak hot water (NSW residential load 2010)

"High Efficiency Silicon Solar Cells"

- . To become "insanely cheap"! (Ramez Naam)
- . PERC continues to accelerate pace of change
- . 10c/Watt (US\$) modules within next few years (& 1c/kWh electricity prices)!
- . Solar to play a major role in mitigating global warming.

