Short term PhD Exchange Brasil/Australia 2016

PV SYSTEMS IN WARM AND SUNNY CLIMATES: RESULTS FROM PV INSTALLATIONS IN BRAZIL AND SYNERGIES WITH AUSTRALIA

Lucas Nascimento nascimento.ufsc@gmail.com www.fotovoltaica.ufsc.br

Fotovoltaica - UFSC

Centro de Pesquisa e Capacitação em Energia Solar da Universidade Federal de Santa Catarina

> Prof. Ricardo Ruther Director

Distributed Generation: ANEEL RN482/2012

- Microgenerators: up to 75kWp
- Minigenerator: 75kWp to 5MWp

Net Metering (energy credits valid for 60 months)

Competes with tariff @ 0.20 AUD/kWh

Installed until now: 11MWp Up to 2024: Expected 1.3 GWp

PV MARKET IN BRAZIL - CENTRALIZED

Dedicated solar PV auctions organised by governament

- Dec 2014: 1st Solar Auction = 1GWp -> (to come online until 2017)
- Aug 2015: 2nd solar Auction = 1GWp -> (to come online until 2016)
- Nov 2015: 3rd solar Auction= 1GWp -> (to come online until 2018)

Up to 2024: Expected 7 GWp

PV MARKET IN AUSTRALIA PERFORMANCE ASSESSMENT

Australia reaches 4.8 GW of rooftop PV capacity

У 📴 in 🕇

Post date: 02/05/2016 - 08:45

Australia had 1,527,684 rooftop PV systems, representing 4,809 MW of installed PV capacity, as of March 31, 2016, according to new figures provided by Australia's Clean Energy Regulator. In March, the newly installed PV power was 23.1 MW, down from 44.5 MW in the previous month and 62.3 MW in March 2015. Last month's numbers, however, are provisional and will be updated and likely increased in the statistics for April.

In the first quarter of 2016, the country registered new rooftop PV systems with a combined capacity of 104.9 MW. In the same period of 2015, the newly installed PV power was 176.6 MW

In 2015, Australia added over 642.64 MW through the RET scheme. Australia had around 3.9 GW of cumulative installed rooftop PV power at the end of 2014, 3.1 GW at the end of 2013, 2.4 GW at the end of 2012 and 1.3 GW at the end of 2011. © PHOTON

Ittp://www.cleanenergyregulator.gov.au

Chttp://www.cleanenergyregulator.gov.au/RET/Forms-and-resources/postcode-data-for...

Source: http://www.photon.info/en/news/australia-reaches-48-gw-rooftop-pv-capacity

Japonese Solar Neighborhood

Performance Ratio (PR)

- Ratio between real and theoretical performance
- Allows direct comparison between PV systems (independent from system configuration and location)

PVSYST LOSS DIAGRAM OVER THE WHOLE YEAR

• Long term variability

- Soiling
- Modelling inaccuracies

PR: 76,3%

LONG TERM PERFORMANCE

FLORIANOPOLIS – BRAZIL (1997-2012) IRRADIANCE DISTRIBUTION OVER 15 YEARS

	0	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300
1997	3,5%	6,7%	8,1%	7,6%	6,7%	5,5%	5,1%	4,7%	4,4%	4,0%	4,1%	4,0%	3,9%	3,8%	4,1%	4,4%	4,4%	5,4%	6,3%	1,9%	1,3%	0,2%	0,1%	0,0%	0,0%	0,0%	0,0%
1998	2,8%	5,7%	5,9%	5,5%	5,6%	5,0%	4,9%	4,4%	4,4%	4,2%	4,4%	4,1%	4,4%	4,5%	5,0%	5,4%	6,9%	6,2%	5,7%	2,9%	1,9%	0,5%	0,2%	0,0%	0,0%	0,0%	0,0%
1999	2,8%	5,8%	6,0%	5,7%	5,6%	5,1%	4,6%	4,5%	4,4%	4,1%	3,8%	4,2%	4,6%	4,6%	5,0%	5,3%	6,1%	6,0%	5,6%	3,3%	1,6%	0,8%	0,3%	0,1%	0,0%	0,0%	0,0%
2000	2,1%	4,2%	4,9%	5,0%	4,6%	4,3%	4,1%	4,1%	4,1%	4,1%	4,3%	4,6%	4,9%	5,4%	6,0%	6,9%	7,5%	7,3%	6,6%	2,9%	1,2%	0,5%	0,2%	0,1%	0,0%	0,0%	0,0%
2001	2,5%	4,8%	5,0%	5,1%	5,2%	5,0%	4,7%	4,4%	4,2%	4,1%	4,5%	4,5%	4,5%	5,1%	5,7%	6,9%	7,4%	5,8%	5,9%	2,8%	1,1%	0,5%	0,2%	0,1%	0,0%	0,0%	0,0%
2002	1,9%	3,8%	4,6%	5,0%	5,2%	4,9%	5,1%	5,4%	5,1%	5,8%	5,9%	5,6%	5,2%	4,9%	5,2%	5,6%	5,7%	5,8%	5,8%	2,5%	0,6%	0,2%	0,1%	0,0%	0,0%	0,0%	0,0%
2003	2,3%	4,1%	4,5%	4,9%	5,3%	4,9%	4,9%	4,5%	4,3%	4,4%	4,6%	4,6%	4,9%	5,1%	5,5%	6,4%	6,5%	6,7%	7,3%	2,8%	0,8%	0,4%	0,2%	0,0%	0,0%	0,0%	0,0%
2004	3,0%	5,5%	5,8%	5,5%	4,9%	4,9%	4,6%	4,3%	4,2%	4,1%	4,2%	4,2%	4,5%	4,8%	5,6%	6,5%	6,7%	5,7%	5,5%	3,2%	1,3%	0,6%	0,3%	0,1%	0,0%	0,0%	0,0%
2005	2,8%	5,0%	5,0%	4,7%	4,8%	4,9%	4,6%	4,5%	4,2%	4,2%	4,3%	4,5%	4,9%	5,2%	6,1%	7,1%	7,4%	5,8%	5,8%	2,5%	1,0%	0,4%	0,1%	0,1%	0,0%	0,0%	0,0%
2006	2,3%	4,3%	5,3%	5,1%	4,9%	4,9%	4,9%	4,6%	4,7%	4,8%	4,7%	5,0%	5,1%	5,5%	6,4%	7,6%	6,4%	6,0%	4,4%	1,7%	0,8%	0,3%	0,1%	0,0%	0,0%	0,0%	0,1%
2007	3,0%	5,2%	5,6%	5,7%	5,4%	5,1%	4,8%	4,9%	4,9%	5,0%	5,4%	5,5%	5,5%	5,6%	6,5%	7,0%	6,9%	5,2%	1,8%	0,7%	0,2%	0,1%	0,0%	0,0%	0,0%	0,0%	0,0%
2008	2,8%	4,7%	5,1%	4,9%	5,1%	5,0%	5,1%	5,0%	5,3%	5,2%	5,4%	5,4%	5,8%	6,5%	7,5%	8,0%	6,0%	4,5%	1,6%	0,6%	0,3%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
2009	2,8%	5,8%	5,8%	5,6%	5,5%	5,4%	4,9%	4,5%	4,5%	4,3%	4,4%	4,6%	4,9%	5,4%	6,7%	7,2%	6,6%	6,4%	3,5%	0,9%	0,4%	0,1%	0,0%	0,0%	0,0%	0,0%	0,0%
2010	4,0%	6,2%	6,3%	5,9%	5,4%	4,9%	5,0%	4,7%	4,9%	4,9%	4,8%	5,0%	5,1%	5,4%	5,8%	6,1%	6,4%	5,2%	2,5%	0,8%	0,3%	0,2%	0,0%	0,0%	0,0%	0,0%	0,0%
2011	3,7%	6,4%	6,2%	6,0%	5,8%	5,5%	5,0%	4,7%	4,7%	4,5%	4,9%	5,0%	5,4%	6,3%	7,3%	7,3%	6,0%	3,3%	1,4%	0,5%	0,2%	0,1%	0,0%	0,0%	0,0%	0,0%	0,0%
2012	4,8%	5,1%	4,7%	4,5%	4,4%	4,1%	4,1%	4,2%	4,2%	4,1%	4,3%	4,3%	4,8%	5,0%	5,6%	6,8%	6,9%	5,9%	5,5%	4,2%	1,0%	0,4%	0,1%	0,1%	0,0%	0,0%	0,0%

Média 2,9% 5,2% 5,5% 5,4% 5,3% 5,0% 4,8% 4,6% 4,5% 4,5% 4,5% 4,6% 4,7% 4,9% 5,2% 5,9% 6,5% 6,5% 5,7% 4,7% 2,1% 0,9% 0,3% 0,1% 0,0% 0,0% 0,0%

N. REICH; W. VAN SARK; E. ALSEMA; S. KAN, S. S.; DER, A. V.; HEIDE, R. L., AND R. SCHROPP. Weak light performance and spectral response of different solar cell types. In: 20th European Photovoltaic Solar Energy Conference, 2005. **Anais.** Spain, 2005.v.p.

FLORIANOPOLIS – BRAZIL (1997-2012) TEMPERATURE DISTRIBUTION OVER 15 YEARS

LONG TERM PERFORMANCE ASSESSMENT

Performance Ratio (PR)

Max: 79%

Min: 73%

Est. Average:76%

Yield (kWh/kWp)

Max: 1205

Min: 1072

Est. Average :1159

Irradiation

1527 kWh/m².year

NASCIMENTO, L.; RUTHER, R. Fifteen years and counting: The reliable long-term performance of the first grid-connected, building-integrated, thin-film photovoltaic installation in Brazil. In: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014. **Anais.**, 2014.v.p. 3372-3377.

DIERAUF, T.; GROWITZ, A.; KURTZ, S. R.; CRUZ, J. L. B.; RILEY, E.; HANSEN, C. Weather-Corrected Performance Ratio. National Renewable Energy Laboratory, 2013.

RESULTS - PV ARRAY DEGRADATION

RESULTS - PV ARRAY DEGRADATION

RESULTS - PV ARRAY DEGRADATION

- Degradation of about 0.55% p.a.
- Degradation specsheet ~ 1% p.a.
- Literature thin films (1.5% p.a. on average)
- Literature Si (0.7% p.a. on average)

NASCIMENTO, L.; RUTHER, R. Fifteen years and counting: The reliable long-term performance of the first grid-connected, building-integrated, thin-film photovoltaic installation in Brazil. In: 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 2014. Anais., 2014.v.p. 3372-3377.

 Table I.
 Monthly mean values of daily irradiation and daily irradiation losses, monthly values of rainfall and days with available data.

Month/year	$\bar{H_{\rm D}}$ (kWh m ⁻²)	<i>H</i> L (%)	Rain (mm)	Days
December 2008	3.9	0.8	15.0	15
January 2009	3.8	0.5	54.9	31
February 2009	4.8	1.4	217.0	28
March 2009	5.3	1.1	141.5	28
April 2009	6.6	0.6	50.7	30
May 2009	7.1	0.8	5.2	29
June 2009	6.8	3.2	0.0	28
July 2009	7.4	9.6	0.0	31
August 2009	7.4	17.3	0.0	31
September 2009	5.7	10.8	15.7	26
October 2009	5.8	1.5	5.4	31
November 2009	4.5	2.2	33.5	30
December 2009	4.2	0.4	23.2	14
Average	5.8	4.3	46.8	

ZORRILLA-CASANOVA, J.; PILIOUGINE, M.; CARRETERO, J.; BERNAOLA-GALVÁN, P.; CARPENA, P.; MORA-LÓPEZ, L.; SIDRACH-DE-CARDONA, M. Losses produced by soiling in the incoming radiation to photovoltaic modules. **Progress in Photovoltaics: Research and Applications.** Issue 4, v.21, p.790-796, 2013.

Slime mould? Need manual cleaning!

Annual rainfall in Florianópolis 1600mm/year

RESULTS - SOILING

	T mod °C	E eff W/m2	Isc STC (A)		Uoc STC (V)		[Impp STC (A)			Vmpp STC (V)		Pmpp STC (W)			Fill factor (%)	
String 1 - Clean	61	1001	1,15	5 70/	611,44	0 79/	0,7%	0,88	5 7 9/		404,84	0.79/	354,4	6 59/		50,2	0.09/
String 1 - Dirty	57	991	1,09	5,7%	607,10	0,7%		0,83	5,7%		401,85	0,7%	332,9	0,5%		50,3	0,070
String 2 - Clean	60	986	1,14	E 00/	609,30	4.09/	4.00%	0,86	C 49/	0.494	401,50	0.49/	344,9	6.69/	Γ	49,7	-0.3%
String 2 - Dirty	57	997	1,07	3,6%	603,36	1,0%	0,81	0,1%		399,80	0,4%	323,5	0,0%	Γ	49,9	-0,3%	
String 3 - Clean	60	1003	1,14	4.09/	615,28	0.09/		0,86	4.09/		410,81	0.49/	351,6	E 49/		50,3	0.00/
String 3 - Dirty	58	1001	1,08	4,9%	615,54	0,0%	ſ	0,82	4,9%		410,23	0,1%	334,7	3,1%		50,2	0,2%
String 4 - Clean	60	991	1,11	E 70/	614,62	-3,2%		0,82	E (0)/		405,13	4.00/	330,7	2.09/	Γ	48,7	4.00/
String 4 - Dirty	58	951	1,05	3,7%	635,14			0,77	5,6%		411,68	-1,0%	318,2	3,9%	ſ	47,9	1,0%
String 5 - Clean	60	1014	0,97	4.09/	604,96	2.09/		0,73	E 0%		404,54	4 50/	295,6	4 29/		50,5	4 40/
String 5 - Dirty	57	984	0,92	4,9%	9% 617,26		-2,0%	0,69	3,9%		410,66	-1,5%	283,5	4,3%		49,8	1,4%
Avera		5,4%		-0,7%	-		5,6%			-0,4%		5,3%)		0,6%		

• ~ 5% losses ~ 0.2\$/kWh - Would result in \$48.00 over the 2-years

ELETRICAL IMPACT NON-HOMOGENEOUS SOILING

Soiling acts as a filter for short wavelengths (blue light) Good for CIGS; bad for CdTe and a-Si

QASEM, H.; BETTS, T. R.; MÜLLEJANS, H.; ALBUSAIRI, H.; GOTTSCHALG, R. Dust-induced shading on photovoltaic modules. **Progress in Photovoltaics: Research and Applications.** p.n/a-n/a, 2012.

NASCIMENTO, L.; CAMPOS, R.; RUTHER, R.; SIMÕES, G. AVALIAÇÃO DE DESEMPENHO DE DIFERENTES TECNOLOGIAS FOTOVOLTAICAS NO NORDESTE BRASILEIRO. In: VI Congresso Brasileiro de Energia Solar 2016. **Anais.** Belo Horizonte - Brasil, 2016.v.p.

HICKEL, B.; DESCHAMPS, E. M.; NASCIMENTO, L.; RUTHER, R.; SIMOES, G. ANÁLISE DA INFLUÊNCIA DO ACÚMULO DE SUJEIRA SOBRE DIFERENTES TECNOLOGIAS DE MÓDULOS FV: REVISÃO E MEDIÇÕES DE CAMPO. In: VI Congresso Brasileiro de Energia Solar, 2016. **Anais**.

MODELLING INACCURACIES

IRRADIANCE DISTRIBUTION - BRAZIL

Irradiance (W/m²)

Fotovoltaicaufsc

IRRADIANCE DISTRIBUTION - AUSTRALIA

COPPER, J. K.; BRUCE, A. G. Assessment of the Australian Bureau of Meteorology hourly gridded solar data: ASIA-PACIFIC SOLAR RESEARCH CONFERENCE. Brisbane - Australia, 2015.

SOLAR FARMS – LAST BRAZILIAN ENERGY AUCTION INVERTER LOADING RATIOS

APPENDIX I - Contracted projects in the 2nd LER/2015: main technical features

D\/ Project	State	DC Power	AC Power	Qualified	Physical	Capacity (%	Factor	Mounting system	Connection	Contracted Energy	Inverter Sizing
PV Ploject	State	(MWp)	(MW)	(MW)	(MWa)	ref.: Qual.Pow	ref.: DC.Pow	Plounding system	Connection	(MWa)	Factor (%)
Sol Steelcons Miracema 1	то	33.3	30.0	30.0	5.4	18.0%	16.2%	Fixed	Basic Grid	5.4	90.2%
Sol Steelcons Miracema 2	то	33.3	30.0	30.0	5.4	18.0%	16.2%	Fixed	Basic Grid	5.4	90.2%
Sol Steelcons Miracema 3	то	33.3	30.0	30.0	5.4	18.0%	16.2%	Fixed	Basic Grid	5.4	90.2%
Fazenda Esmeralda	PE	40.1	30.0	30.0	6.2	20.7%	15.4%	Fixed	Distribution	6.2	74.7%
Boa Hora 1	PE	30.0	25.0	25.0	5.3	21.2% 17.7%		Fixed	OTF	5.3	83.3%
Boa Hora 2	PE	30.0	25.0	25.0	5.3	21.2%	17.7%	Fixed	OTF	5.3	83.3%
Boa Hora 3	PE	30.0	25.0	25.0	5.3	21.2%	17.7%	Fixed	OTF	5.3	83.3%
NOVA CRUZ	RN	34.0	30.0	30.0	7.0	23.3%	20.6%	1 axis tracking	Distribution	6.3	88.2%
COREMAS III	PB	36.8	30.0	30.0	7.1	23.7%	19.3%	Fixed	Basic Grid	7.1	81.6%
BJL 4	BA	25.5	20.0	20.0	5.0	25.0%	19.6%	Fixed	Basic Grid	5.0	78.4%
Sobrado1	BA	34.2	30.0	30.0	7.8	26.0%	22.8%	1 axis tracking	Distribution	7.8	87.7%
BRISAS SUAVES	SP	6.0	5.0	5.0	1.3	26.0%	21.8%	1 axis tracking	Distribution	1.3	84.0%
GUIMARANIA 1	MG	36.8	30.0	30.0	8.2	27.3%	22.3%	1 axis tracking	Distribution	8.2	81.5%
GUIMARANIA 2	MG	36.8	30.0	30.0	8.2	27.3%	22.3%	1 axis tracking	Distribution	8.2	81.5%
PIRAPORA 2	MG	36.8	30.0	30.0	8.4	28.0%	22.8%	1 axis tracking	Basic Grid	8.4	81.5%
PIRAPORA 3	MG	36.8	30.0	30.0	8.4	28.0%	22.8%	1 axis tracking	Basic Grid	8.4	81.5%
PIRAPORA 4	MG	36.8	30.0	30.0	8.4	28.0%	22.8%	1 axis tracking	Basic Grid	8.4	81.5%
PARACATU 1	MG	36.8	30.0	30.0	8.5	28.3%	23.1%	1 axis tracking	Basic Grid	8.5	81.5%
PARACATU 2	MG	36.8	30.0	30.0	8.5	28.3%	23.1%	1 axis tracking	Basic Grid	8.5	81.5%
PARACATU 3	MG	36.8	30.0	30.0	8.5	28.3%	23.1%	1 axis tracking	Basic Grid	8.5	81.5%
PARACATU 4	MG	36.8	30.0	30.0	8.5	28.3%	23.1%	1 axis tracking	Basic Grid	8.5	81.5%
APODI I	CE	36.5	30.0	30.0	8.7	29.0%	23.9%	1 axis tracking	Basic Grid	8.7	82.3%
APODI II	CE	36.5	30.0	30.0	8.7	29.0%	23.9%	1 axis tracking	Basic Grid	8.7	82.3%
APODI III	CE	36.5	30.0	30.0	8.7	29.0%	23.9%	1 axis tracking	Basic Grid	8.7	82.3%
APODI IV	CE	36.5	30.0	30.0	8.7	29.0%	23.9%	1 axis tracking	Basic Grid	8.7	82.3%
JUAZEIRO SOLAR II	BA	34.4	29.8	29.8	8.7	29.2%	25.3%	1 axis tracking	Basic Grid	8.7	86.7%
JUAZEIRO SOLAR I	BA	34.4	29.8	29.8	8.7	29.2%	25.3%	1 axis tracking	Basic Grid	8.7	86.7%
JUAZEIRO SOLAR III	BA	34.4	29.8	29.8	8.7	29.2%	25.3%	1 axis tracking	Basic Grid	8.7	86.7%
JUAZEIRO SOLAR IV	BA	34.4	29.8	29.8	8.7	29.2%	25.3%	1 axis tracking	Basic Grid	8.7	86.7%
Assú V	RN	36.7	30.0	30.0	9.2	30.7%	25.1%	1 axis tracking	Basic Grid	9.2	81.7%
Floresta I	RN	36.7	30.0	30.0	9.4	31.3%	25.6%	1 axis tracking	Basic Grid	9.4	81.7%
Floresta II	RN	36.7	30.0	30.0	9.4	31.3%	25.6%	1 axis tracking	Basic Grid	9.4	81.7%
Floresta III	RN	24.5	20.0	20.0	6.3	31.5%	25.7%	1 axis tracking	Basic Grid	6.3	81.7%
Total		1,115.9	929.3	929.3	246.0					245.3	

83,4% -> 120% Overload

CHOICE OF PV TECHNOLOGIES: WHAT IS (ARE) THE BEST TECHNOLOGY(IES) FOR PV PROJECTS IN BRAZIL?

ANEEL R&D project: 3 MWp PV power plant 8 evaluation sites 30 million US\$ (single project)

Evaluation Sites(MAs):

- Inverters: Power One (ABB)
- •PV Modules (7 technologies):
 - Multi/c-Si (Hanwha)
 - Mono/c-Si (Yingli);
 - a-Si (Dupont Apollo)
 - a-Si/µc-Si (Dupont Apollo)
 - CdTe (First Solar)
 - CIGS (Saint Gobain)
 - CPV InGaP/GaAs/Ge (Daido Steel)

•Tracker: BSQ Solar

Choice of PV Technologies: What is (are) the best technology(ies) for PV projects in Brazil?

EVALUATION SITES

Capivari de Baixo - SC

EVALUATION SITES

Fotovoltaicaufsc

Ano					20	015						2016	
Mês	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Jan	Fev	Mar
MA2 - Aratiba													
MA3 - Cachoeira Dourada													
MA4 - Itiquira													
MA5 - Caucaia													
MA6 - Caetité													
MA8 - Cabo Frio													

3 MWp R&D PV power plant

Measurements @ 1 second resolution

EILE

3 MWP R&D PV POWER PLANT INVERTER TOPOLOGY & INVERTER LOADING RATIO

INVERTER LOADING RATIO

Fotovoltaicaufsc

INVERTER LOADING RATIO

BUT THE EFFECT NEEDS TO BE QUANTIFIED ON AN ANNUAL BASIS

Cloud-edge and cloud-enhancement effects

Record-breaking overirradiance events

RECORD-BREAKING OVERIRRADIANCE EVENTS

Table 1 Maximum irradiance registered during cloud enhancement events around the World.

References	Maximum irradiance (W/m ²)	Altitude (m)	Location	Plan of measurement	Duration of measurement	Instrument of measurement	Resolution of measurements (s)	Response time of instrument, 95% of final value (s)
Emck and Ritcher (2008)	1832	3400	Ecuador (Andes)	Horizontal	4 years	Pyranometer (CM3)	300	≤18
Yordanov et al. (2013a)	>1800	1131	Kenya (Kisumu)	-				
Present paper	1590	760	Brazil (São Paulo)	Horizontal	<1 year	PV module (MSX-10)	1	$\leq 10^{-5}$
Tapakis and Charalambides (2014)	1533	360	Cyprus	Horizontal	1 year	Pyranometer (MS-802)	<60	≤5
Piacentini et al. (2003)	1528	3900	Argentina (Puna of Atacama)	Horizontal	<1 year	Pyranometer (PSP Eppley)	5	≤15
Yordanov et al. (2013a)	1528	60	Norway (Grimstad)	Tilted (39°)	<1 year	mc-Si PV Cell (Soldata 80spc)	10 ⁻²	≼ 0.025 [*]
Weigl et al. (2012)	>1500	<10	USA (Oahu)	Horizontal	_	Pyranometer (LICOR LI-200)	1	$\leq 10^{-5}$
Piacentini et al. (2011)	1477	4	Brazil (Recife)	Horizontal	l year	Pyranometer (PSP Eppley)	≼60	≤15
Hansen et al. (2010)	>1400	1620	USA (Albuguerque)	Horizontal	<1 year	Pyranometer (CM-21)	60 (average)	≤5
Gu et al. (2001)	>1400	<400	Brazil (Rondônia)	Horizontal	<1 year	Pyranometer (PSP Eppley)	60 (average)	≤15
Luoma et al. (2012)	>1300	22	USA (San Diego)	Horizontal	-	Pyranometer (LICOR LI-200)	1	≤10 ⁻⁵
Piedehierro et al. (2014)	1244	680	Spain (Granada)	Horizontal	5 years	Pyranometer (CM-11)	60	≤15

ALMEIDA, M. P.; ZILLES, R.; LORENZO, E. Extreme overirradiance events in São Paulo, Brazil. **Solar Energy.** v.110, p.168-173, 2014.

CLOUD-EDGE AND CLOUD-ENHANCEMENT EFFECTS

Itiquira-MT evaluation site (one of the eight sites)

500 meters above sea level

CLOUD-EDGE AND CLOUD-ENHANCEMENT EFFECTS

Cachoeira Dourada-GO evaluation site (another one of the eight sites)

POSSIBLE REVISION OF MAXIMUM FUSE RATING BY PV MODULE MANUFACTURER

Fuse estimated temperature of 70 °C

Derating factor due to high fuse temperature

Long over irradiance events

Manufacturer specified fuse blows

TIME RESOLUTION OF SOLAR RADIATION INTEGRATION TIME (1 SEC)

TIME RESOLUTION OF SOLAR RADIATION INTEGRATION TIME (10 SEC)

TIME RESOLUTION OF SOLAR RADIATION INTEGRATION TIME (1 MIN)

TIME RESOLUTION OF SOLAR RADIATION INTEGRATION TIME (10 MIN)

TIME RESOLUTION OF SOLAR RADIATION INTEGRATION TIME (1 HOUR)

TIME RESOLUTION OF SOLAR RADIATION INTEGRATION TIME (10 MIN vs 1 SEC.)

SOLAR ENERGY (IRRADIATION) DISTRIBUTION IN TERMS OF PERCENTAGE OF ENERGY CONTENT

	G<= 300	300 <g<=700< th=""><th>700<g<1000< th=""><th>1000<g<=1200< th=""><th>G>=1200</th></g<=1200<></th></g<1000<></th></g<=700<>	700 <g<1000< th=""><th>1000<g<=1200< th=""><th>G>=1200</th></g<=1200<></th></g<1000<>	1000 <g<=1200< th=""><th>G>=1200</th></g<=1200<>	G>=1200
1 s	25%	42%	15%	8%	10%
10 s	25%	42%	16%	8%	9%
1min	24%	41%	18%	7%	9%
5min	24%	41%	21%	9%	5%
10min	26%	42%	27%	5%	0%
15min	25%	49%	12%	14%	0%
30min	29%	37%	34%	0%	0%
1 <mark>h</mark>	26%	55%	19%	0%	0%

CHOICE OF PV TECHNOLOGIES SPECTRAL EFFECTS

Normalised spectral response for seven PV technologies and the standard ASTM G173-03 spectrum

Relative spectral response of various PV technologies (multicrystalline Si, amorphous Si, CdTe and CIGS), measured under STC temperature (25° C), with the AM1.5G spectrum (grey) also shown as reference (L1U et al., 2014b).

CHOICE OF PV TECHNOLOGIES SPECTRAL EFFECTS

Figura 6.3: Espectro característico para uma superfície voltada para o norte e com inclinação de 30º na cidade de Porto Alegre, RS (vermelho) e o espectro definido pela norma ASTM G-173 (azul).

"Estimativa da distribuição espectral da radiação solar sobre o território brasileiro através de análise multiinstrumental" Ph.D. Thesis - Rafael Haag – 2012 – Universidade Federal do Rio Grande do Sul, orientador: Prof. Arno Krenzinger

Fotovoltaicaufsc

SOLAR SPECTRAL IRRADIANCE: ASTM G-173

INPUT DATA

- Total column ozone equivalent
- Total column water vapor equivalent
- Aerosol optical depth
- carbon dioxide concentration
- Air Mass

GUEYMARD, C. SMARTS2, A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and performance assessment Florida Solar Energy Center. Cocoa, Florida, p.84, 1995.

ASTM INTERNATIONAL Helping our world work better

ASTM G173 - 03(2012) Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface

GUEYMARD, C. A.; MYERS, D.; EMERY, K. Proposed reference irradiance spectra for solar energy systems testing. **Solar Energy.** Issue 6, v.73, p.443-467, 2002.

ESPECTRAL DATA SYDNEY TOTAL COLUMN WATER VAPOR EQUIVALENT

GUEYMARD, C. A.; MYERS, D.; EMERY, K. Proposed reference irradiance spectra for solar energy systems testing. **Solar Energy.** Issue 6, v.73, p.443-467, 2002.

GUEYMARD, C. A.; MYERS, D.; EMERY, K. Proposed reference irradiance spectra for solar energy systems testing. **Solar Energy.** Issue 6, v.73, p.443-467, 2002.

ESPECTRAL DATA SYDNEY CARBON DIOXIDE CONCENTRATION

Time Series, Area-Averaged of Carbon Dioxide, Mole Fraction in Free Troposphere monthly 2 x 2.5 deg. [AIRS AIRX3C2M v005] PPM over 2002-Sep - 2011-Nov, Region 150.3E, 34.5S, 151.3E, 33.5S

Data sets from NASA Giovanni Web Portal

GIOVANNI - The Bridge Between Data an

GUEYMARD, C. A.; MYERS, D.; EMERY, K. Proposed reference irradiance spectra for solar energy systems testing. **Solar Energy.** Issue 6, v.73, p.443-467, 2002.

KASTEN, F.; YOUNG, A. T. Revised optical air mass tables and approximation formula. **Applied Optics.** Issue 22, v.28, p.4735-4738, 1989.

Fotovoltaicaufsc

ESPECTRAL DATA SYDNEY

FIELD VALIDATION

GREEN, M. A.; EMERY, K.; HISHIKAWA, Y.; WARTA, W.; DUNLOP, E. D. Solar cell efficiency tables (version 47). **Progress in Photovoltaics: Research and Applications.** Issue 1, v.24, p.3-11, 2016.

MYERS, D. R.; GUEYMARD, C. A. **Description and Availability of the SMARTS Spectral Model for Photovoltaic Applications** International Symposium on Optical Science and Technology, SPIE's 49th Annual Meeting. Denver, Colorado, 2004. Short term PhD Exchange Brasil/Australia 2016

PV SYSTEMS IN WARM AND SUNNY CLIMATES: RESULTS FROM PV INSTALLATIONS IN BRAZIL AND SYNERGIES WITH AUSTRALIA

UNIVERSIDADE FEDERAL DE SANTA CATARINA

Lucas Nascimento nascimento.ufsc@gmail.com www.fotovoltaica.ufsc.br

