Laser-Crystallised Thin-Film Polycrystalline Silicon Solar Cells

Jonathon Dore
SPREE Research Seminar - 27th June, 2013
Contents

- Introduction – motivation for thin-film
- Thin-film PV technologies
- Diode laser crystallised thin-film pc-Si
 - Material and device preparation
 - Intermediate layers
 - Stability
 - Other current work
 - Near-term priorities for future work
 - Long-term priorities for future work
Contents

- Introduction – motivation for thin-film
- Thin-film PV technologies
- Diode laser crystallised thin-film pc-Si
 - Material and device preparation
 - Intermediate layers
 - Stability
 - Other current work
 - Near-term priorities for future work
 - Long-term priorities for future work
1. Introduction

Development of Spot-Market Prices for Polysilicon (in US$ / kg)

GTM Research

School of Photovoltaic and Renewable Energy Engineering
Contents

- Introduction – motivation for thin-film
- Thin-film PV technologies
- Diode laser crystallised thin-film pc-Si
 - Material and device preparation
 - Intermediate layers
 - Stability
 - Other current work
 - Near-term priorities for future work
 - Long-term priorities for future work
2. Thin-Film PV Technologies

- **Commercial**
 - CdTe
 - CIGS
 - a-Si/μc-Si

- **Research**
 - CZTS
 - OPV
 - Thin crystalline silicon
 - Wafer transfer
 - Thin polycrystalline
3. Thin Polycrystalline Si

- Solid Phase
 - SPC
 - AIC

- Liquid Phase
 - ZMR
 - EBC
 - LC
 - UV
 - Visible
 - IR
Contents

- Introduction – motivation for thin-film
- Thin-film PV technologies
- Diode laser crystallised thin-film pc-Si
 - Material and device preparation
 - Intermediate layers
 - Stability
 - Other current work
 - Near-term priorities for future work
 - Long-term priorities for future work
Contents

- Introduction – motivation for thin-film
- Thin-film PV technologies
- Diode laser crystallised thin-film pc-Si
 - Material and device preparation
 - Intermediate layers
 - Stability
 - Other current work
 - Near-term priorities for future work
 - Long-term priorities for future work
4. Material Preparation

808 nm CW LIMO diode laser
12 mm x 170 µm

diffused n+
undoped poly-Si
B-doped Intermediate layer
Glass 5x5 cm²

~10 µm
~150 nm
3 mm
5. Grain structure

- Many $\Sigma 3$ twin boundaries
- Defect density $< 5 \times 10^7$ cm$^{-2}$
- Mobility of 300-450 at $\sim 1 \times 10^{16}$ cm$^{-3}$

Optical microscope

TEM

School of Photovoltaic and Renewable Energy Engineering
6. Device Fabrication

- n contact pad
- Aluminium
- Resist
- n+
- p-
- Intermediate layer
- Glass
- p contact pad

Cell area = 1 cm²
7. Light IV

- $\eta = 11.7\%$
- $V_{OC} = 585\ mV$
- $J_{SC} = 27.6\ mA/cm^2$
- $FF = 72.4\ %$
8. Improvement path

Record Efficiency [%]

School of Photovoltaic and Renewable Energy Engineering
8. Improvement path

Record Efficiency [%]

First devices with SiO$_x$ IL

School of Photovoltaic and Renewable Energy Engineering
8. Improvement path

- First devices with SiO$_x$ IL
- SiO$_x$/SiC$_x$/SiO$_x$ IL

Record Efficiency [%]

<table>
<thead>
<tr>
<th>Month</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul</td>
<td>8.5</td>
<td>9.2</td>
<td>10.5</td>
</tr>
<tr>
<td>Oct</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

School of Photovoltaic and Renewable Energy Engineering
8. Improvement path

- **First devices with SiO\textsubscript{x} IL**
- SiO\textsubscript{x}/SiN\textsubscript{x}/SiO\textsubscript{x} IL
- SiO\textsubscript{x}/SiC\textsubscript{x}/SiO\textsubscript{x} IL

Record Efficiency [%]

- Jul-2011
- Oct-2011
- Jan-2012
- Apr-2012
- Jul-2012
- Oct-2012
- Jan-2013
- Apr-2013
- Jul-2013

School of Photovoltaic and Renewable Energy Engineering
8. Improvement path

- First devices with SiO\textsubscript{x} IL
- SiO\textsubscript{x}/SiC\textsubscript{x}/SiO\textsubscript{x} IL
- SiO\textsubscript{x}/SiN\textsubscript{x}/SiO\textsubscript{x} IL
- improved SiO\textsubscript{x}/SiN\textsubscript{x}/SiO\textsubscript{x} IL; Rear texture

Record Efficiency [%]
Introduction – motivation for thin-film
Thin-film PV technologies
Diode laser crystallised thin-film pc-Si

– Material and device preparation
– Intermediate layers
– Stability
– Other current work
– Near-term priorities for future work
– Long-term priorities for future work
10. Intermediate Layer

Cell area = 1 cm²
10. Intermediate Layer

- Wetting layer
- Dopant source
- Contamination barrier
- Stable > 1414C
- Transparent anti-reflection coating (ARC)
- Passivation layer
11. Materials of Interest

- SiC_x
- SiN_x
- SiO_x

- Layers deposited by RF sputtering or PECVD
- 10-200 nm thick
- Either alone or in stacks
Intermediate Layer

- Wetting layer
- Dopant source
- Contamination barrier
- Stable > 1414C
- Transparent anti-reflection coating (ARC)
- Passivation layer
12. Wetting and crystallisation

- Laser energy

<table>
<thead>
<tr>
<th>Int. layer</th>
<th>Process range</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>13 J/cm²</td>
</tr>
<tr>
<td>SiO<sub>x</sub></td>
<td>194 J/cm²</td>
</tr>
<tr>
<td>SiN<sub>x</sub></td>
<td>220 J/cm²</td>
</tr>
<tr>
<td>SiO<sub>x</sub>/SiC<sub>x</sub> stack</td>
<td>246 J/cm²</td>
</tr>
</tbody>
</table>

Too low (nc regions)

Too high (dewetting)

Just right

Too low (nc regions)
13. Wetting and crystallisation

- Laser energy

<table>
<thead>
<tr>
<th>Int. layer</th>
<th>Process range</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>13 J/cm²</td>
</tr>
<tr>
<td>SiO$_x$</td>
<td>194 J/cm²</td>
</tr>
<tr>
<td>SiN$_x$</td>
<td>220 J/cm²</td>
</tr>
<tr>
<td>SiO$_x$/SiC$_x$ stack</td>
<td>246 J/cm²</td>
</tr>
</tbody>
</table>

- SiN$_x$ layers result in pinholes in Si at high laser energies

Transmission micrograph
Intermediate Layer

- Wetting layer
- Dopant source
- Contamination barrier
- Stable > 1414C
- Transparent anti-reflection coating (ARC)
- Passivation layer
14. Dopant source

- **p**-poly-Si
- **Glass** 5x5 cm
- B-doped Intermediate layer
- SiOₓ/ SiNₓ/ SiOₓ stack
- Glass 5x5 cm²
15. Dopant source

- Uniform region created during molten phase
- p^+ region at interface?
16. Dopant source

- Spreading resistance shows no p+
- p+ region at interface?
- Inversion layer?
Intermediate Layer

- Wetting layer
- Dopant source
- Contamination barrier
- Stable > 1414°C
- Transparent anti-reflection coating (ARC)
- Passivation layer
17. Contamination Barrier

- Problem is blocking B from glass!
- \(\text{SiO}_x \) best barrier
- Can use \(\text{SiO}_x/\text{SiC}_x \) or \(\text{SiO}_x/\text{SiN}_x \) stacks

![Graph showing sheet conductance for different layers.](https://via.placeholder.com/150)
18. Contamination Barrier

- Iron can also diffuse from glass
- Iron found at silicon grain boundary when no IL used
- No iron when SiOx IL used
Intermediate Layer

- Wetting layer
- Dopant source
- Contamination barrier
- Stable > 1414C
- Transparent anti-reflection coating (ARC)
- Passivation layer
19. Stability

- Thick SiC_x or SiN_x layers cause wrinkling at the glass surface
- Visible in reflection micrographs at IL interface viewed through the glass

140nm SiC_x
80nm SiN_x
14nm SiC_x
80nm SiO_x
No IL
20. Stability

- Nitrogen from SiN$_x$ layer diffuses into Si during crystallisation
- N conc in Si when SiC$_x$ and SiO$_x$ used likely from atmosphere
- No excess C from SiC$_x$ or O from SiO$_x$
Intermediate Layer

- Wetting layer
- Dopant source
- Contamination barrier
- Stable > 1414°C
- Transparent anti-reflection coating (ARC)
- Passivation layer
21. Transparent ARC

- Ideally, $n = 2.4$, $d = \frac{\lambda_{\text{min}}}{4n}$
 and no absorption
22. Transparent ARC

- Ideally, \(n = 2.4, \quad d = \frac{\lambda_{\text{min}}}{4n} \)
 and no absorption
Intermediate Layer

- Wetting layer
- Dopant source
- Contamination barrier
- Stable > 1414C
- Transparent anti-reflection coating (ARC)
- Passivation layer
23. Passivation Layer

- Single- and double-layer stacks

- 80nm SiO$_x$ ($n \approx 1.5$)
- 20 nm SiC$_x$ ($n=2.9$) 80nm SiO$_x$
- 70 nm SiN$_x$ ($n=2.1$) 80nm SiO$_x$
24. Passivation Layer

- Poor front surface for $\text{SiO}_x/\text{SiC}_x$
25. Passivation Layer

- triple-layer stacks

15 nm SiO$_x$
20 nm SiC$_x$
80nm SiO$_x$

15 nm SiO$_x$
70 nm SiN$_x$
80nm SiO$_x$
26. Passivation Layer

- Surface SiOx improves IQE
- ONO still not ideal
26. Passivation Layer

- Surface SiOx improves IQE
- ONO still not ideal
- Optimised ONO (with reactive sputtering) better
26. Passivation Layer
Introduction – motivation for thin-film
Thin-film PV technologies
Diode laser crystallised thin-film pc-Si
 – Material and device preparation
 – Intermediate layers
 – Stability
 – Other current work
 – Near-term priorities for future work
 – Long-term priorities for future work
27. Stability

Baked	J_{SC} mA/cm²	V_{OC} mV	FF %	η %
27.6 | 585 | 72.4 | 11.7 |
Stability

<table>
<thead>
<tr>
<th>Condition</th>
<th>J_{SC} mA/cm2</th>
<th>V_{OC} mV</th>
<th>FF (%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baked</td>
<td>27.6</td>
<td>585</td>
<td>72.4</td>
<td>11.7</td>
</tr>
<tr>
<td>Degraded</td>
<td>27.7</td>
<td>572</td>
<td>62.9</td>
<td>10.0</td>
</tr>
</tbody>
</table>

![Graph showing current density vs. voltage for baked and degraded conditions](image-url)
28. Stability

- Occurs in dark
28. Stability

- Best stabilised efficiency = 10.4%
- Occurs in dark
- Related to absorber doping
- Days since first measurement

Best stabilised efficiency = 10.4%
29. Selective p+ (Chaho Ahn)

- Degradation likely due to poor contact with lightly-doped absorber

\[p^- 10^{16} \text{ cm}^{-3} \]
29. Selective p+ (Chaho Ahn)

- Degradation likely due to poor contact with lightly-doped absorber
- Solution: selective p+ under absorber contact

\[p^- \quad 10^{16} \text{ cm}^{-3} \]
30. Selective p+ (Chaho Ahn)

<table>
<thead>
<tr>
<th>Cell</th>
<th>J_{sc} [mA/cm2]</th>
<th>V_{oc} [mV]</th>
<th>FF [%]</th>
<th>η [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (initial)</td>
<td>23.6</td>
<td>524</td>
<td>62.3</td>
<td>7.7</td>
</tr>
<tr>
<td>Baseline (delayed)</td>
<td>23.9</td>
<td>434</td>
<td>46.4</td>
<td>4.7</td>
</tr>
<tr>
<td>Selective p+ (initial)</td>
<td>24.4</td>
<td>555</td>
<td>56.2</td>
<td>7.6</td>
</tr>
<tr>
<td>Selective p+ (delayed)</td>
<td>24.2</td>
<td>559</td>
<td>56.9</td>
<td>7.7</td>
</tr>
</tbody>
</table>

- Data for cells with SiO$_x$ intermediate layer
Introduction – motivation for thin-film
Thin-film PV technologies
Diode laser crystallised thin-film pc-Si

– Material and device preparation
– Intermediate layers
– Stability
– Other current work
– Near-term priorities for future work
– Long-term priorities for future work
31. Rear Texture (Zamir Pakhuruddin)
32. Rear Texture (Zamir Pakhuruddin)

AFM
RMS = 78 nm

Absorption without rear reflector or ARC
33. Rear Texture (Zamir Pakhuruddin)
33. Rear Texture (Zamir Pakhuruddin)
34. Suns-V_{oc}

- Measured after metallisation
 - Significant $R_{SH} \sim 500$ Ohms.cm2 and $n = 2$ influence

Measured

Fit

$n=1$

$n=2$

Shunt

Voltage [V]

Suns

0.3 0.4 0.5 0.6 0.7

0.01 0.1 1 10
35. Dark Lock-In Thermography

- DLIT shows hotspot at Si crack (shown for neighbouring cell)
- Same in forward and reverse bias
 - Ohmic shunt
36. Crack-free crystallisation (Jialiang Huang)

Standard process

“Crack-free” process

Scan direction

12 mm

School of Photovoltaic and Renewable Energy Engineering
37. Grain orientation control (Jae Sung Yun)

![Inverse pole orientation map](image)

- **Position 1**
 - Standard Process
 - 100 nm SiO$_x$ Capping Layer

- **Position 2**

- **Position 3**
 - Inverse pole orientation map
38. Laser diffusion (Miga Jung)

- **RTP diffusion**
 - Expensive
 - Slow
 - Causes glass softening
 - Exacerbates cracks
 - Large process window?

- **Laser diffusion**
 - Cheap
 - Fast
 - No effect on glass
 - No effect on cracks
 - Process window?

![Graph showing sheet resistance comparison between RTP and Laser diffusion samples.](image-url)
Contents

- Introduction – motivation for thin-film
- Thin-film PV technologies
- Diode laser crystallised thin-film pc-Si
 - Material and device preparation
 - Intermediate layers
 - Stability
 - Other current work
 - Near-term priorities for future work
 - Long-term priorities for future work
39. Near-Term Priorities for Future Work

- Transfer processes to TETB
- Improve bulk passivation
- Improve surface passivation
- Identify and address device fabrication losses
 - E.g. Cell isolation scribes

- Investigate alternative junction formation
 - Heterojunction
 - Other?

- Plasmonic light-trapping?
Introduction – motivation for thin-film
Thin-film PV technologies
Diode laser crystallised thin-film pc-Si

– Material and device preparation
– Intermediate layers
– Stability
– Other current work
– Near-term priorities for future work
– Long-term priorities for future work
40. Simple economics

* Multi wafer spot price = $0.84/wafer
 @ eff = 17% → $0.20/W

* BSG ~ $20/m² above standard glass
 @ eff = 12% → $0.17/W

* Need to increase eff and/or use standard glass
41. Process sequence

- **Typical TF-Si**
 - Clean
 - Deposit
 - Scribe
 - Clean
 - Deposit
 - Scribe
 - Module assembly

- **Laser-crystallised TF-Si**
 - Clean
 - Deposit
 - Crystallise
 - Coat
 - Diffuse
 - Etch
 - Hydrogenate
 - Scribe
 - Coat
 - Bake
 - Inkjet
 - Etch
 - Expose
 - Bake
 - Inkjet
 - Clean
 - Bake
 - Clean
 - Deposit
 - Scribe
 - Bake
 - Module Assembly

- Need to simplify contacting scheme
42. Conclusions

- Laser-crystallised poly-Si solar cell reaching 11.7% efficiency
 - Exceeds record for thin-film poly-Si
- Short-term, recoverable degradation
- Selective p+ metallisation makes stable cells
- Performance improvements mostly due to intermediate layer
- Many more opportunities for further improvement