Seminar at the School of Photovoltaic and Renewable Energy Engineering University of New South Wales, Australia

14th April 2016

Bulk minority carrier lifetime issues in silicon materials for photovoltaics

John D. Murphy*

School of Engineering, University of Warwick, UK

* john.d.murphy@warwick.ac.uk

EPSRC-funded UK silicon PV materials activity

Engineering and Physical Sciences Research Council

The University of Manchester

Tony Peaker, Bruce Hamilton, Matthew Halsall, Vladimir Markevich

- DLTS.
- Bulk passivation.

SuperSilicon PV project (EP/M024911/1)

John Murphy, Nick Grant

• Bulk lifetime issues.

Peter Wilshaw, Sebastian Bonilla, Phill Hamer

- Surface and bulk passivation.
- Characterisation (EBIC, atom probe). 2

Bulk lifetime issues in PV

- Motivation for working on (silicon) PV is clear.
- Recent advances in surface passivation mean that bulk lifetime can limit the efficiency of some of the best cells.
- There is a need to understand the physics of the recombination process which occur in PV substrates.
- Need to be able to quantify lifetime and study it during cell processing, and ideally need to develop processes to improve it.

Outline of talk

- 1. Injection-dependent lifetime analysis approach
- 2. Recombination at oxygen-related extended defects
- 3. Internal gettering in mc-Si
- 4. High lifetime silicon materials (if time allows)

Robert Falster, Vladimir Voronkov

• Karsten Bothe, Rafael Krain

Co-workers for this talk

• Mohammad Al-Amin, Alex Pointon, Nick Grant

- Rachel McGuire
- Dan Macdonald, Fiacre Rougieux

5

SFH

THE AUSTRALIAN NATIONAL UNIVERSITY

Injection-dependent lifetime measurements

Plotting lifetime curves

- Usually people consider lifetime as a function of the excess minority carrier density, *i.e.* plot τ versus Δn for *p*-type or Δp for *n*-type.
- Instead plot lifetime versus
 X = n/p:

$$X = \frac{n}{p} = \frac{n_0 + \Delta n}{p_0 + \Delta p}$$

 In this example, an apparently complicated Δn response becomes simple.

Assumes $\Delta n = \Delta p$ (no trapping)

Linear formulation of SRH statistics

See: Murphy et al., J. Appl. Phys., 111 113709 (2012)

Instead of the usual SRH expression:

$$\tau_{n} = \frac{1}{N} \left(\frac{\frac{1}{\alpha_{n}} (p_{0} + p_{1} + \Delta n) + \frac{1}{\alpha_{p}} (n_{0} + n_{1} + \Delta n)}{p_{0} + n_{0} + \Delta n} \right) \qquad p_{1} = N_{v} \exp\left(-\frac{(T - V)}{kT}\right)$$

$$n_{1} = N_{c} \exp\left(-\frac{(E_{c} - E_{T})}{kT}\right)$$

We use a linear form (derivation given in the reference above):

$$\tau_n = \frac{1}{\alpha_n N} \left(1 + \frac{Qn_1}{p_0} + \frac{p_1}{p_0} \right) \left(X \left(Q - \frac{Qn_1}{p_0} - \frac{p_1}{p_0} \right) \right) \qquad Q = \frac{\alpha_n}{\alpha_p} \left(= \frac{\sigma_n}{\sigma_p} \right) \qquad X = \frac{n}{p} = \frac{n_0 + \Delta n}{p_0 + \Delta p}$$

First term: independent of injection level

Second term: linearly dependent on n/p

((E - E))

Extracting defect parameters

$$\tau_{n} = \frac{1}{\alpha_{n}N} \left[1 + \frac{Qn_{1}}{p_{0}} + \frac{p_{1}}{p_{0}} + X \left(Q - \frac{Qn_{1}}{p_{0}} - \frac{p_{1}}{p_{0}} \right) \right]$$

- The gradient and intercept as X → 1 can be trivially determined from the experimental lifetime plot versus X = n/p.
- Do this for samples with different doping levels (p₀) and use:

$$\frac{d\tau_n}{dX} / \tau_{n X \to 1} = \underbrace{\frac{Q}{1+Q}}_{1+Q} + \frac{1}{p_0} \underbrace{\frac{Qn_1 + p_1}{1+Q}}_{1+Q}$$

Intercept $\Rightarrow Q = \alpha_n / \alpha_p = \sigma_n / \sigma_p$
Gradient $\Rightarrow Qn_1 + p_1$

• Also look at $X \rightarrow 1$ limit:

• Term proportional to state density.

Application to indium doped silicon

Passivate the surfaces well
 (S = 4 cm/s in this case)

2. Strip out other known recombination processes

e.g. intrinsic recombination (we use Richter *et al.*, Phys. Rev B., **86** 165202 (2012).

3. Apply injectiondependent approach.

Extracting defect parameters for indium

$$\tau_n = \frac{1}{\alpha_n N} \left[1 + \frac{Qn_1}{p_0} + \frac{p_1}{p_0} \right] \quad X \left[Q - \frac{Qn_1}{p_0} - \frac{p_1}{p_0} \right] \quad Q = \frac{\alpha_n}{\alpha_p} \left(= \frac{\sigma_n}{\sigma_p} \right) \quad X = \frac{n}{p} = \frac{n_0 + \Delta n}{p_0 + \Delta p}$$

First term: independent of injection level

Second term: linearly dependent on n/p

More complicated cases...

Two independent SRH centres

$$\frac{1}{\tau_n} = \frac{1}{\tau_1} + \frac{1}{\tau_2}$$

One defect with two energy levels

Derived in Murphy *et al., J. Appl. Phys.*, **111** 113709 (2012)

Used by Niewelt *et al.* in LID work (PSS RRL, **6** 692 (2015)

The defect parameters can then be extracted by using the same approach as before twice.

Summary of the linear SRH approach

- The physics is the same as the "normal" approach, but the linear approach provides a neat way of visualising what is going on.
- Key points:
 - A single lifetime measurement cannot tell you very much about the SRH properties of the defect.
 - Varying with majority carrier concentration (doping level) easily allows information on the energy level and ratio of cross sections to be extracted if the samples are well controlled.
 - Getting the state density in isolation from lifetime measurements is not possible as it is always multiplied by the capture coefficient (cross-section).

Outline of talk

- 1. Injection-dependent lifetime analysis approach
- 2. Recombination at oxygen-related extended defects
- 3. Internal gettering in mc-Si
- 4. High lifetime silicon materials

Oxygen in silicon

- Oxygen in Cz-Si and mc-Si comes from the silica crucible which contains the melt.
- Well known to be linked to light induced degradation, but there is another problem...
- Typical levels of oxygen are supersaturated at cell processing temperatures.
- Silicon dioxide precipitates are thermodynamically stable, but need to nucleate.

 $\begin{array}{c} \text{OXYGEN CONCENTRATION} \\ (10^{17} \text{ atoms/cm}^3) \end{array}$

From Borghesi *et al.,* J. Appl. Phys., **77** 4169 (1995)

 Cz-Si ingots for PV are often pulled too fast! ⇒ sub-optimal v/G ratio* ⇒ high concentration of vacancies ⇒ nucleation centres for oxide precipitates.

Oxygen-related extended defects in silicon

mono-Si

Haunschild *et al.*, Photovoltaics International (2012)

mc-Si

Bothe et al., J. Appl. Phys., 106 104510 (2009)

Möller et al., Phys. Stat. Sol. (a), 171 175 (1999)

Oxide precipitate growth in silicon

See R. Falster, V.V. Voronkov et al., Proceedings of the Electrochemical Society, High Purity Silicon VIII, 200405 188 (2004)

- The rate of transformation of unstrained "ninja" particles depends strongly on oxygen concentration, density of growing precipitates and growth temperature
- How recombination-active are the different precipitate structures?

Specimen preparation for lifetime study

- ~100 high-purity (001)-orientation Cz-Si wafers.
 - Oxygen concentration: 5.9 to 9.6 x 10¹⁷ cm⁻³
 - p-type: [B] = 0.39 to 8.2 x 10¹⁵ cm⁻³
 - n-type: [P] = 0.05 to 1.0 x 10¹⁵ cm⁻³
- Four-stage precipitation treatment:
 - 15 min at 1000°C to dissolve grown-in precipitates
 - Nucleation at 650°C for range of times (6 to 32h)
 - 'Drift' anneal at 800 °C for 4h to grow nuclei
 - Growth anneal at 1000 °C for range of times (0.5 to 16h)

 Strained oxide precipitate densities determined by Schimmel etching

Typical p-type lifetime curve

- Lifetime measured with FeB pairs and boron-oxygen defects dissociated.
- Low Fe_i concentration (< 4 x 10^{11}cm^{-3})

 Recombination clearly not via a single one-level defect

Dependence on precipitate density (p-type)

- Similar n/p dependence in > 50 p-type wafers
- In all cases the data can be fitted by just two independent centres
- We call these "Defect 1" and "Defect 2"

Dependence on doping (n-type)

- Very similar precipitate densities, but substantially different doping levels.
- Similar SRH fitting parameters (N α_p).
- Parameterisation
 valid in n-type as well as p-type.

Extraction of SRH parameters

Temperature-dependence of lifetime

- Lifetime increases with increasing temperature
- Temperature-dependence allows proximity to valence/ conduction band to be determined
 - Defect 1: $E_v + 0.22eV$
 - Defect 2: E_c 0.08eV

23

- Activation energies for capture coefficients
 - $\alpha_{p1}: 0.20 \text{ eV}$
 - $\alpha_{n2}: 0.14 \text{ eV}$

The role of dislocations and stacking faults

- Same injection response.
- No new levels associated with dislocations and stacking faults.

TEM images from V.Y. Resnik (Moscow)

Murphy *et al.*, J. Appl. Phys., **111** 113709 (2012)

Unstrained ("ninjas") versus strained

 $N_{\text{unstrained}}(n,g) = N_{\text{strained}}(n,16h) - N_{\text{strained}}(n,g)$

 Recombination at unstrained precipitates ~10 to ~30 weaker than at strained ones.

Murphy et al., J. Appl. Phys., **110** 053713 (2011)

Density dependence?

- Relationship between $\alpha_n N$ and precipitate density ~ linear
- Gradient ~2x to 3x higher when precipitates are surrounded by dislocations and stacking faults

Changing the size of the precipitates

- Use a vastly different thermal process to create samples with similar densities of precipitates with different sizes.
- Process B has >10 high temperature steps from a baseline temperature steps (900 ° C to 1175 °C).
- Estimate precipitate sizes from interstitial oxygen loss data (from IR measurements).

Density vs surface area dependence

For spheres:

$$N_i \alpha_{pi} = \eta_i \alpha_{pi} \left(4\pi N_{\text{strained}} \right)^{\frac{1}{3}} \left(\frac{3(\Delta[O_i] - [O_{\text{unstrained}}])}{\rho} \right)^{\frac{2}{3}}$$

For platelets:

$$N_i \alpha_{pi} = \eta_i' \alpha_{pi} \frac{2}{\rho d} \left(\Delta [O_i] - [O_{unstrained}] \right)$$

Recombination activity likely to be dependent on surface area of precipitates and not density

Iron contamination

 "Uncontaminated" and contaminated samples have the same form of injection-dependence

Same wafer, different contamination temperatures

Murphy et al., Appl. Phys. Lett., **102** 042105 (2013)

State density is proportional to interstitial iron lost to precipitates 4x10⁻³ Defect 1

How much iron would need to be at an "uncontaminated" precipitate?

"Uncontaminated"

$$N_1 \alpha_{n1} / N_{strained} = 2.9 \times 10^{-5} cm^3 s^{-1}$$

 $\Rightarrow \Delta Fe/N_{strained} = 14$ Fe atoms/ ppt

$$N_2 \alpha_{n2} / N_{strained} = 5.1 \times 10^{-6} cm^3 s^{-1}$$

$$\Rightarrow \Delta Fe/N_{strained} = 15 Fe atoms/ppt$$

Recombination could be controlled by just ~15 iron atoms per precipitate

$$\Rightarrow \sigma_{n1} \approx 1 \text{ x } 10^{-13} \text{ cm}^2$$
$$\Rightarrow \sigma_{n2} \approx 1.5 \text{ x } 10^{-14} \text{ cm}^2$$

Murphy et al., Appl. Phys. Lett., **102** 042105 (2013)

Competitive gettering

- Standard 850 + 875°C ISFH PDG process.
- Iron more effectively gettered by Pdiffused layer than precipitates.
 - ~20% reduction in $\alpha_n N$ for each state.

<u>Bulk [Fe]</u>: 1.4 x 10^{12} cm⁻³ \rightarrow 5.2 x 10^{11} cm⁻³

Murphy et al., Solar Energy Materials and Solar Cells, 120 402 (2014)

PDG of contaminated samples

 PDG removes iron from precipitates for contamination temperature < 850 °C.

 Above 850 °C (solubility: 1.2 x 10¹³ cm⁻³) the iron becomes ungetterable. Co-precipitation?

Murphy et al., J. Appl. Phys., 116 053514 (2014)

Summary of Part II (oxide precipitates)

- Injection-dependent lifetime measurements on samples with different doping levels reveal two independent SRH centres:
 - "Defect 1" at E_v + 0.22eV, with $Q_1 = \alpha_{n1} / \alpha_{p1} = 157$
 - "Defect 2" at $E_c 0.08 \text{eV}$, $1/Q_2 = \alpha_{p2} / \alpha_{n2} = 1,200$
- In "uncontaminated" materials, the density of states is dependent on the total surface area of the precipitates (not density).
- Iron decorated oxide precipitates have the same centres with density being proportional to interstitial iron loss. Possible that all recombination activity is due to impurities.
- Reasonable levels of iron can be gettered away from oxide precipitates , although very high levels of iron at oxide precipitates is not getterable.

Outline of talk

- 1. Injection-dependent lifetime analysis approach
- 2. Recombination at oxygen-related extended defects
- 3. Internal gettering in mc-Si
- 4. High lifetime silicon materials

Gettering in mc-Si

- External gettering requires transport of impurities to near surface regions (*e.g.* P/B-diffusion, Al, saw damage).
- Internal gettering occurs within the material, for example at dislocations, precipitates or grain boundaries.

External gettering

Internal gettering

• Unintentional internal gettering usually occurs during casting/ cell processing. *Intentional* internal gettering?

Low temperature internal gettering

- High temperature processes are relatively expensive and may result in contamination.
- At low temperatures the solubility of transition metals is low.
- Diffusivity is also low, but annealing times can be long and there is no need for (very) clean conditions.
- Compare to toughening anneals of glass (~550 °C for ~1 day)

Graph from Myers *et al., J. Appl. Phys.,* **88** 3795 (2000)

Prior low T internal gettering study

Krain, Herlufsen & Schmidt, Applied Physics Letters, 93 152108 (2008)

- But, what happens to lifetime?
- Is it actually this straightforward?

Some other studies

• What is really going on?

Liu and Macdonald, *J. Appl. Phys.*, **115** 114901 (2014)

500 °C after 1000 °C oxidation

1cm

-13.2 -13 -12.8 -12.6 (C) (C) -12.4 (C) -12.2 (C) -12.2 (C) -12.2 (C) -12.2 (C) -12.2 (C) -12.2 (C) -12.4 (C) -11.8 -11.6 -11.4

Studying internal gettering is difficult. Why?

- 1. Defect distribution changes during surface passivation.
 - Particularly for high temperature oxidations.
 - Also a problem at low temperatures (for SiN, Al_2O_3).
- 2. Surface passivation can introduce hydrogen.
 - This probably happens for SiN at 350 to 400 °C.
 - Difficult to distinguish between transport and bulk passivation effects.
- 3. Annealing affects the surface recombination velocity.
 - Difficult to report a consistent bulk lifetime.

In our study we try to overcome the above issues in an attempt better to understand internal gettering in mc-Si.

When in the cell process?

Experiments in progress

Experiment I: Sample processing sequence

• Iodine-ethanol surface passivation.

- Annealing performed in a standard laboratory tube furnace (60mm diameter) under nitrogen at 300 °C to 500 °C.
- Samples cooled rapidly (not quenched) by removing boat to air.

3.9 cm by 3.9cm mc-Si samples 2.5x10⁴ 2x10⁴ 3x10⁵ Т 1.6x10⁴ 5x10⁴ 7x10³ 1x10⁴ 6x10³ 2x10⁶ 6x10⁴ -5x10⁴ 3x10⁵ MT 5x10 -3x10⁴ 7x10³ MT 1x10⁴ 6x10⁴ 2x10⁶ -5x10⁴ 3x10⁵ MB 5x10⁴ -3x10⁴ MB 7x10³ 1x10 1x10⁴ 9x10³ 2x10 3x10⁵ 7x10³ В В 5x10⁴ 5x10³ 7x10³ 3x10³ 1x10³ (cm⁻²) (PL a.u.) (a) Scanned (b) Dislocation density (c) Photoluminescence

WARWICK

images

Dislocation density maps use algorithm from Needleman et al., PSS RRL, 7 1041 (2013)

mapping

images

44

Lifetime data (I-E)

- Substantial improvement in bottom wafers (factor of 7).
- Relatively good wafers (middle) get worse with low temperature annealing.

Internal gettering in "bad" wafers at 400 °C B [400 °C]

- Sample from bottom of ingot (3.9 cm by 3.9cm).
- Illumination of ~0.45 sun for 5s.
- FeB pairs mostly associated.
- Low injection level (10¹³ to 10¹⁴ cm⁻³).

Interstitial iron evolution B [400 °C] (cm⁻³)

As-grown

Internal gettering in bottom wafers at 400 °C

Note: different injection levels for lifetime images and graph

WARWICK

Annealing of "good" wafers at 500 °C (I-E)

- Sample from middle bottom (MB) of ingot (3.9 cm by 3.9cm).
- Illumination of ~0.45 sun for 5s.
- FeB pairs mostly associated.
- Low injection level (10¹³ to 10¹⁴ cm⁻³).

As-received

Note: different injection levels for lifetime images and graph

Iron release at 500 °C (I-E)

- 500 °C annealing initially <u>increases</u> the interstitial iron concentration to 3 x 10¹² cm⁻³ in all cases.
- Interstitial iron is released into the bulk from other states (*e.g.* in precipitates/ bound to other defects).
- The interstitial iron then gets recaptured.

Experiment II (SiN): τ

- In some cases considerable difference between I-E passivation case and SiN passivation case.
- Higher lifetime samples do not seem to degrade (as much) with SiN passivation.
- Bulk hydrogenation effect?

IE versus SiN: MB annealing at 400 °C

Iodine-ethanol

Silicon nitride

As-received

• Initial lifetime higher in SiN case (lower SRV + initial hydrogenation).

Lifetime of SiN passivated sample much more stable.

Interstitial Fe (SiN/ I-E)

- In some cases considerable difference between I-E passivation case and SiN passivation case.
- Interstitial iron seems to decay more systematically with SiN than with I-E.
- Possible that hydrogen from SiN interacts with Fe and passivates it or prevents its release from precipitates.

Comparison with Krain et al.

Krain et al., Appl. Phys. Lett., 93 152108 (2008)

- We find different behaviour to Krain *et al.*'s in most samples with either SiN or IE surface passivation.
- Even bottom samples substantially different at 500 °C.

Data from our bottom samples

Summary – low temperature annealing

- Low temperature annealing can improve the carrier lifetime of asreceived mc-Si *in certain cases* and hydrogen is <u>not</u> necessary for the effect to occur.
- Low lifetime bottom wafers are always improved (with and without hydrogen) by gettering of iron. Lifetime can improve by a factor of > 6 (so far) by annealing for 10+ hours at 400 °C.
- Low lifetime top wafers are not significantly improved by low temperature annealing.
- Good wafers from the middle are not improved. Iron release into the bulk at 400 °C and 500 °C appears to be prevented by hydrogenation.
- The behaviour of iron in silicon at 300 °C to 500 °C is a complicated problem and needs further investigation.

Outline of talk

- 1. Injection-dependent lifetime analysis approach
- 2. Recombination at oxygen-related extended defects
- 3. Internal gettering in mc-Si
- 4. High lifetime silicon materials

Float-zone lifetime stability (brief)

- FZ-Si has low oxygen concentration, so might be considered to be an ideal PV substrate (and useful for surface passivation studies).
- Is the lifetime in FZ-Si actually stable with thermal processing?

Early View publication on www.wileyonlinelibrary.com (issue and page numbers not yet assigned; citable using Digital Object Identifier – **DOI**)

Phys. Status Solidi RRL, 1-5 (2016) / DOI 10.1002/pssr.201600080

Thermal activation and deactivation of grown-in defects limiting the lifetime of float-zone silicon

Nicholas E. Grant^{*,1}, Vladimir P. Markevich², Jack Mullins², Anthony R. Peaker², Fiacre Rougieux¹, and Daniel Macdonald¹

Thermal stability of float-zone silicon

Study to appear in Physica Status Solidi RRL in the next few days Grant *et al.*, DOI: 10.1002/pssr.201600080

Various manufacturers; each data point a different sample

Thermal instability of FZ-Si: 400–800 °C

This is only a representation

There is sufficient evidence to suggest that the high recombination region is related to un-clustered vacancies, which have resulted from a fast growth rate and the addition of nitrogen.

vacancies

Overall summary

- Analysing the injection dependence of lifetime in terms of SRH statistics is relatively straightforward in well-controlled samples (have samples with different doping levels).
- Oxygen-related extended defects cause substantial lifetime reductions. Impurities at precipitates enhance recombination, but can be gettered away to an extent.
- Low temperature internal gettering can result in substantial improvements in lifetime in mc-Si, but the process is complicated.
- Passivation choice strongly affects low temperature annealing behaviour. Hydrogen appears to affect behaviour of iron.
- Any questions?

