THE TRANSFORMATION OF ENERGY SYSTEMS TOWARDS SUSTAINABILITY – EXPERIENCE GAINED IN GERMANY

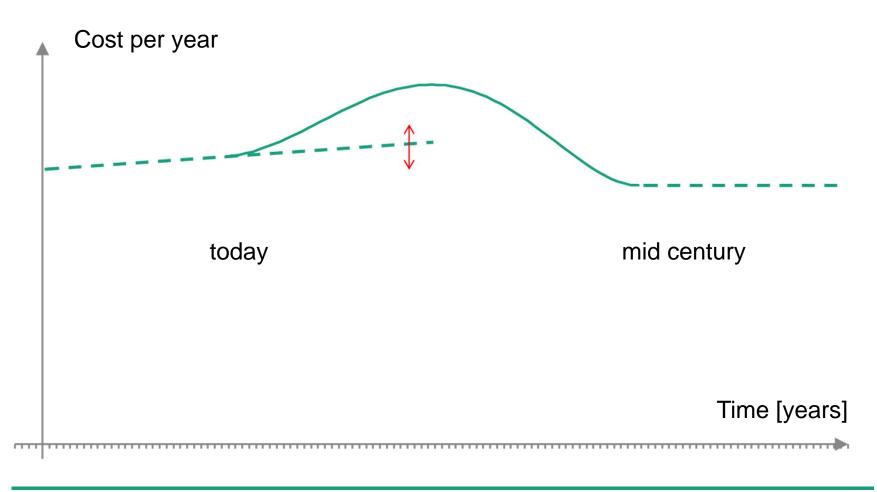
Joachim Luther

Fraunhofer Institute for Solar Energy Systems (ISE), Germany Solar Energy Research Institute of Singapore (SERIS), Singapore

ARC Photovoltaic Centre of Excellence, Seminar, Sydney, November 22, 2012

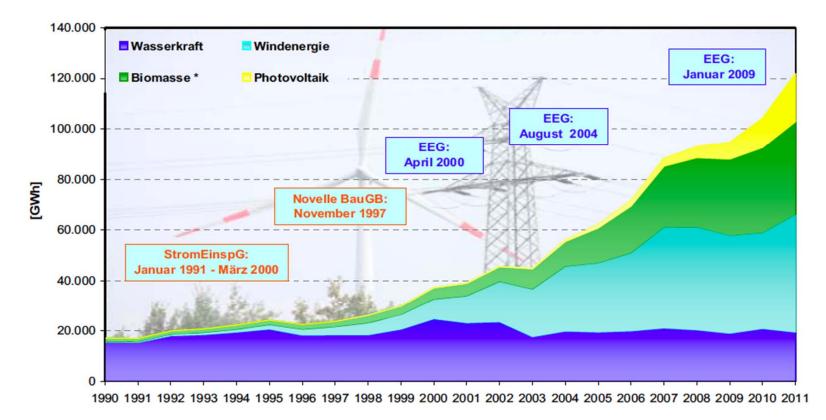
Benefits of an advanced energy system based on the sustainable use of renewable energy sources and energy efficiency, A

- Protection of the natural life support system
- Reduction of energy poverty in developing countries
- Promotion of peace, by reducing the dependence on regionally concentrated energy resource


Benefits of an advanced energy system based on the sustainable use of renewable energy sources and energy efficiency, B

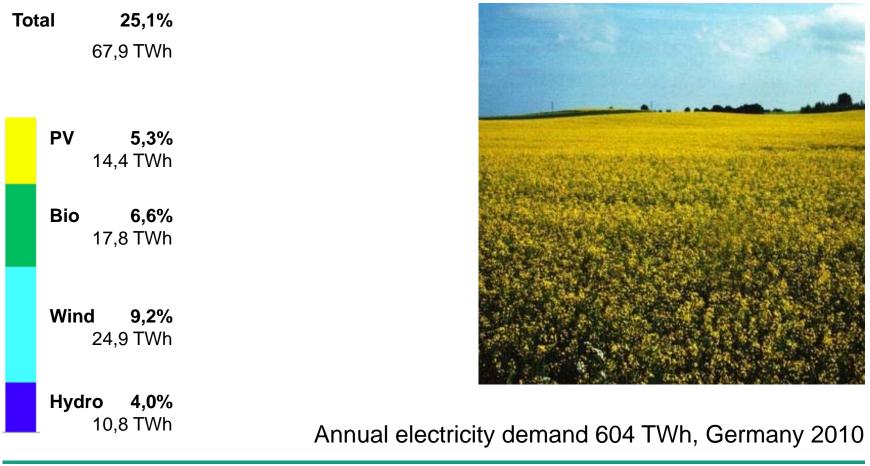
- Increasing the security of energy supply
- Reducing uncertainties in cost of energy supply
- Promotion of future-compliant industries and jobs

Transformation of the energy system, annual cost of a complete energy supply system



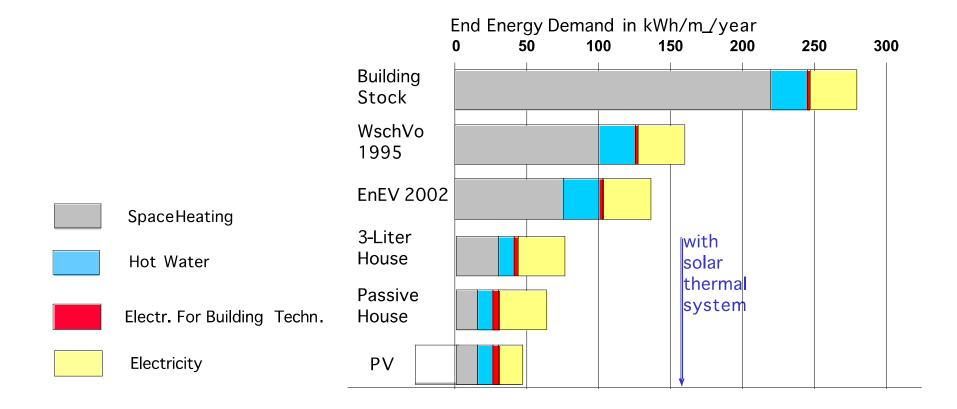
Renewable energies in Germany

Electric energy from renewable sources, Germany


^{*} Feste und flüssige Biomasse, Biogas, Deponie- und Klärgas, biogener Anteil des Abfalls; 1 GWh = 1 Mio. kWh;

Aufgrund geringer Strommengen ist die Tiefengeothermie nicht dargestellt; StromEinspG: Stromeinspeisungsgesetz; BauGB: Baugesetzbuch; EEG: Erneuerbare-Energien-Gesetz; Quelle: BMU-KI III 1 nach Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat); Hintergrundbild: BMU / Christoph Edelhoff; Stand: März 2012; Angaben vorläufig

Annual electricity demand 604 TWh, Germany 2010

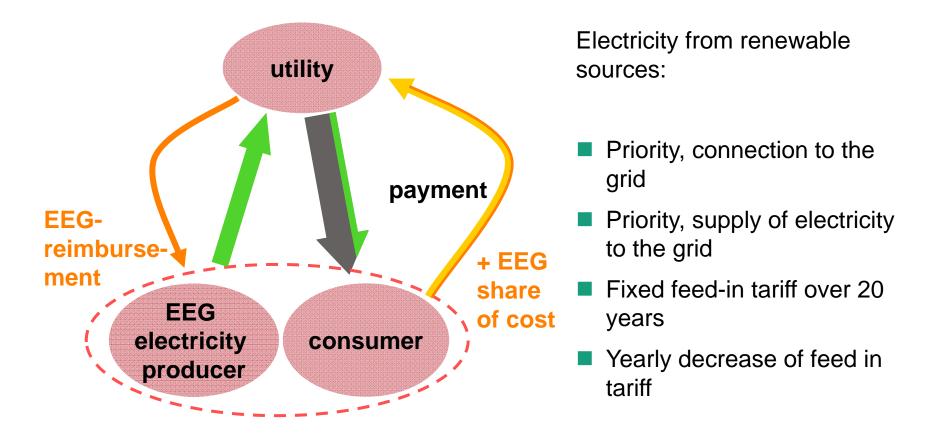


Electricity from renewables first half-year 2012, Germany

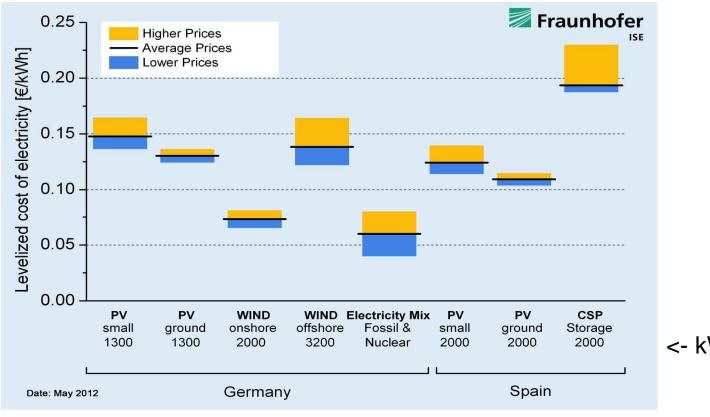
External end energy demand of residential buildings, buildings codes and innovative buildings

Energy policy - European and German targets

	base year	2020	2050
EU			
Reduction of green house gas emissions	1990	20%	min. 80%
Increase in energy efficiency	1990	20%	
Fraction of renewables	2009: 11,6%	20%	
Germany			
Luction of green house gas emissions	1990	40%	80-95%
Increase in energy efficiency	2008	20%	50%
Fraction of renewables, total energy	2011: 12,2%	18%	60%
Fraction of renewables, electricity	2011: 20,0%	35%	80%



The feed-in tariff, the Renewable Energy Sources Act (EEG)


Renewable Energy Sources Act (EEG)

Source: www.bmu.de

Levelised cost of electricity generation (LCOE) Germany and Spain, May 2012

Feed-in tariff Germany:

small PV 0.189 €/kWh

PV ground mounted 0.130 €/kWh

<- kWh/(m² a); h/a

Source: Fraunhofer ISE 2012, C. Kost, T. Schlegl

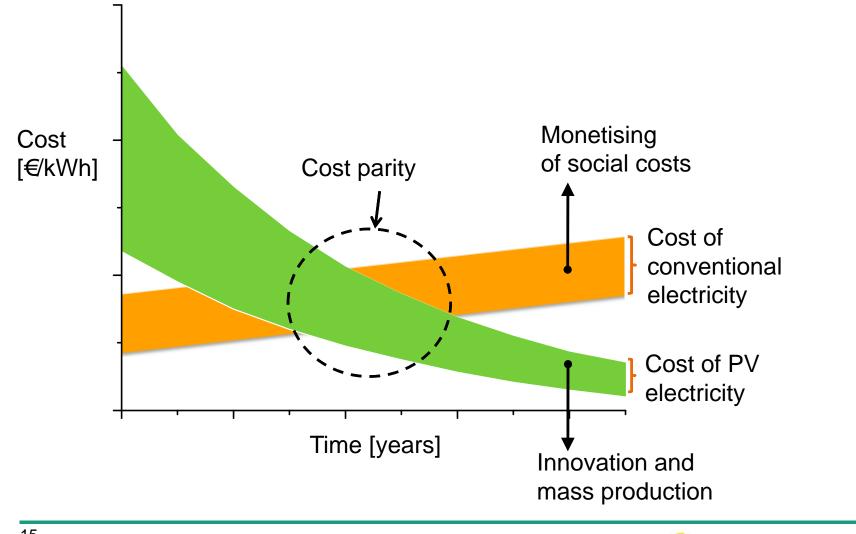
1 € = 1.3 AUD

Levelised cost of PV electricity* September 2012

 Module prices, Germany 	0.7 €/W _p	
System prices (10 kW), Germany	1.5 €/ W _p	
LCOE Southern Germany (1 300 kWh/(m ² a)	0.12 €⁄ kWh	
LCOE at 2 500 kWh/(m ² a)	0.06 €⁄ kWh	
LCOE at 3 400 kWh/(m ² a)	0.05 €⁄ kWh	

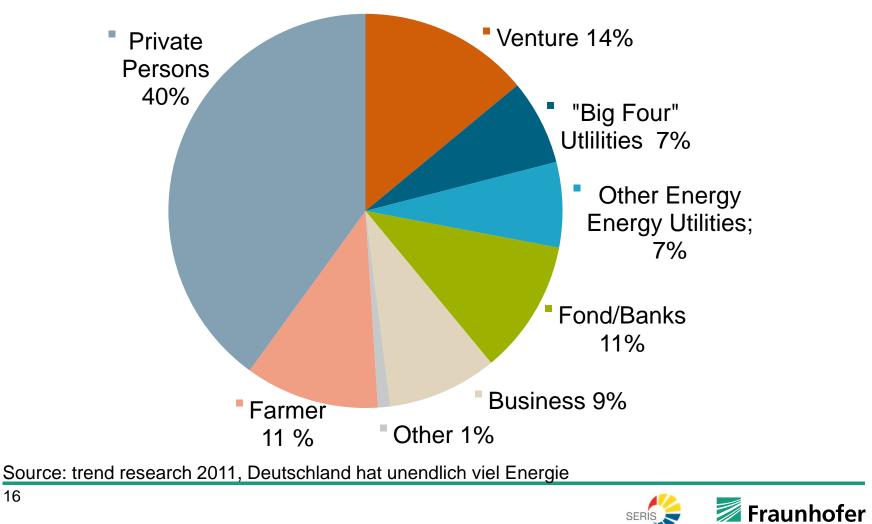
- Near future system price one €/ W_p
 LCOE 0.08 €/ kWh 0.05 €/ kWh 0.03€/kWh
- * Applying the rule of proportion

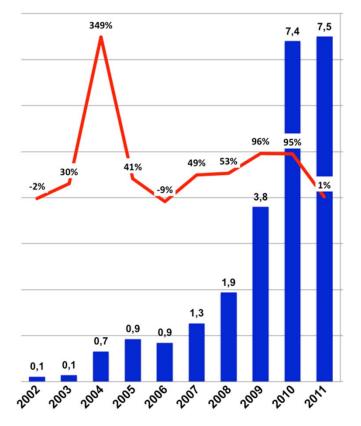
1 € = 1.3 AUD


Levelised cost of electricity* (LCOE) Caveats

- The comparability between different types of energy generation is enabled through the concept of LCOE
- But the LCOE is not a direct measure for the value of electricity. The value is determined by
 - The LCOE
 - The time pattern of load and generation
 - The predictability of the electricity generation
 - Political boundary conditions, market schemes

* LCOE = (present value of expenditures)/(present value of electricity generated)

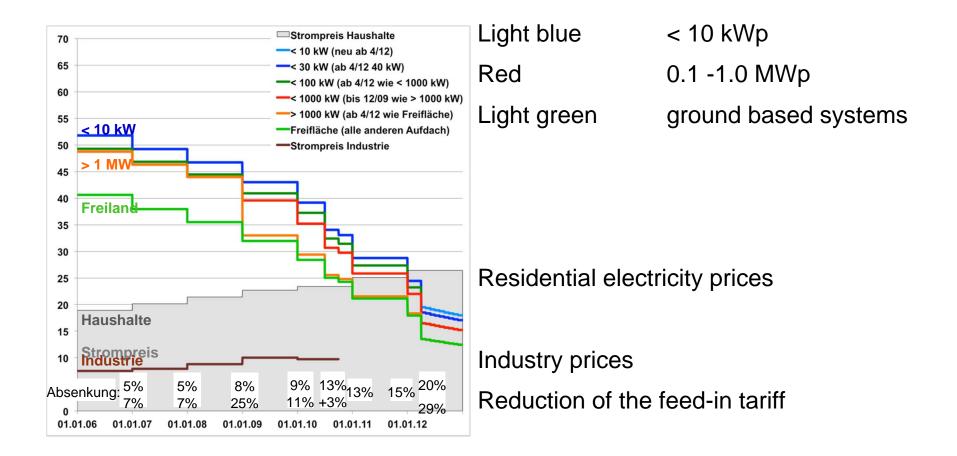

Cost parity between conventional and photovoltaic electricity generation


Financing of renewable energy installations, Germany 2011

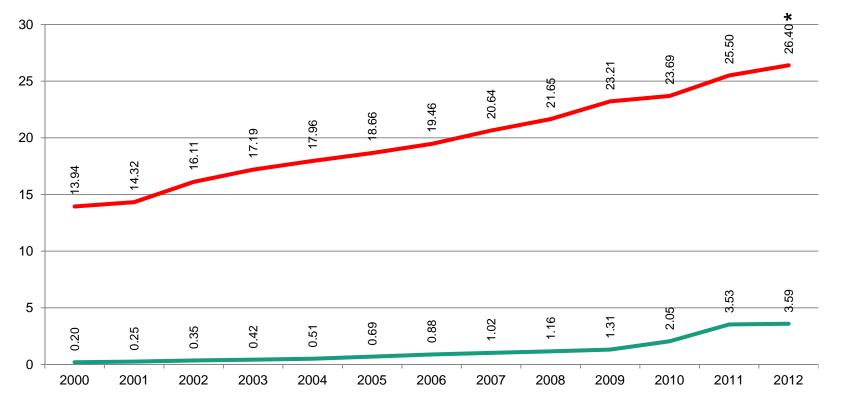
16

Annual PV installations [GW] and growths rates, Germany

Germany annual PV installation [GW] and annual growth rate [%]

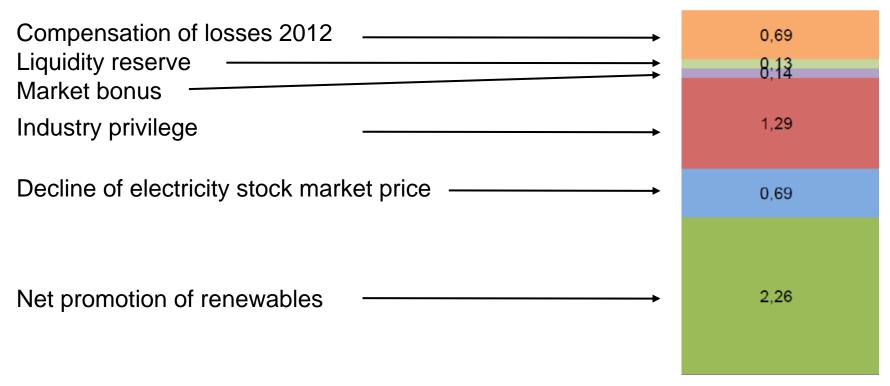


EEG support for PV will run out at a cumulative PV capacity of 52 GW


Source: BSW 2012

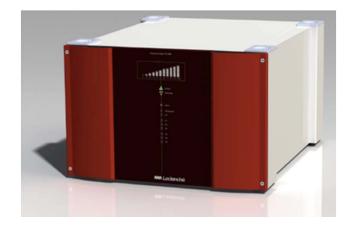
Evolution of the feed-in tariff

Average residential electricity price (Germany) and fraction due to the feed-in scheme



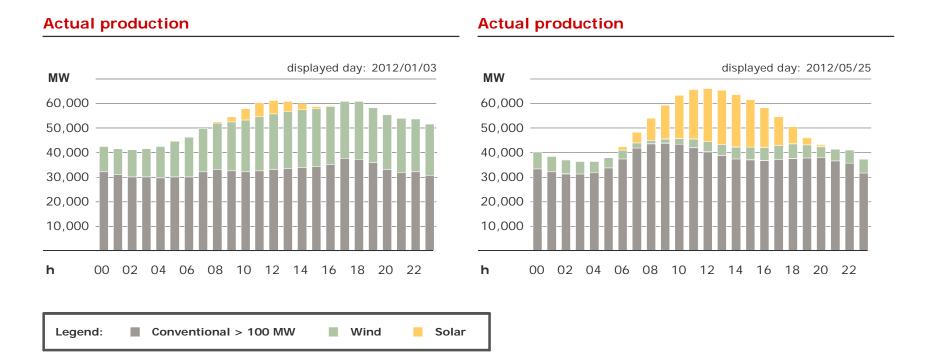
Source: German Federal Network Agency, 2011

* = expected

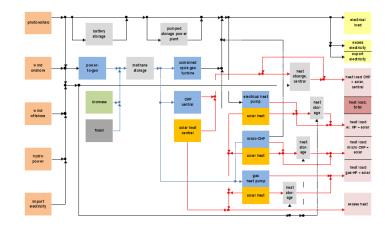

Allocation of costs, feed-in tariff, Germany 2013

Integration of fluctuating renewable electricity into power supply structures

Smart grids, merging energy and information technologies


- Matching demand and generation on the local and central level
 - Control of non time-sensitive loads
 - Control of the energy demand through variable tariffs
 - Control of renewable and conventional electricity generation
 - Energy weather forecast
 - Energy storage
- Large area (inter-) continental grids

Electricity generation in Germany, selected days 03.01.2012 und 25.05.2012


Renewables, installed (rated) power, August 2012 PV 30 GW, wind 29 GW

Source: B. Burger, Fraunhofer ISE, 2012

An extreme model of a future German energy system* energy sources: 100% from wind, solar, hydro, biomass; no import/export

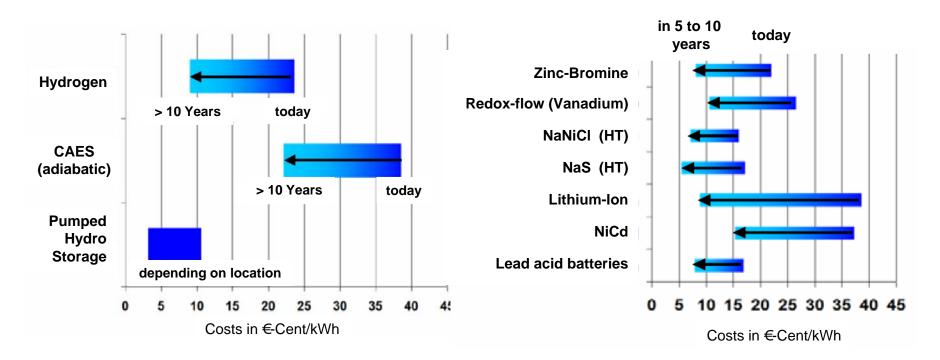
PV	220 GW,	214 TWh		
Wind	253 GW,	596 TWh		
Hydro	5 GW,	21 TWh		
Bio		50 TWh		
Energy efficient buildings -50%				

Peak load 132 GW Max. generation 321 GW

Source H. Henning, A. Palzer, Fraunhofer ISE 2012

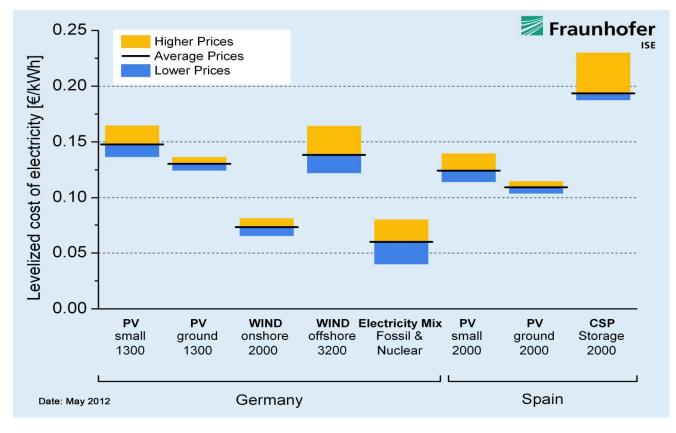
*heat and electricity; liquid fuels not included

Handling excess electricity generation from solar and wind - examples


Load management

- Large area electricity exchange (export/import)
- Energy storage electricity
 - Hydro, pressurised air
 - Batteries
- Energy storage heat
 - Water, building components
- Energy storage gas
 - Methane, Hydrogen
- Energy storage transport
 - Batteries

Cost of electrical energy storage Examples



Load levelling: 1 GW for 8h, 1 cycle per day Load levelling and peak shaving: 100 kW for 2.5 h, 2 cycles per day

Source: VDE ETG, 2008

Levelised cost of electricity generation (LCOE) Germany and Spain, May 2012

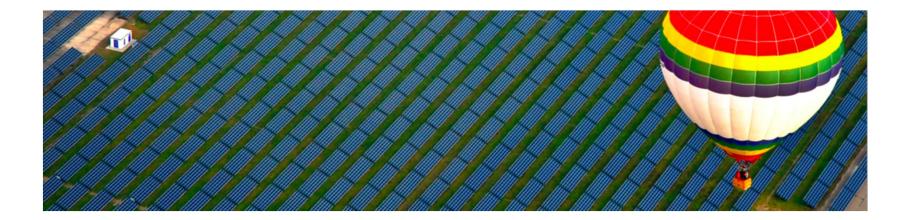
Residential electricity price Germany:

~ 0.25 €/kWh

Source: Fraunhofer ISE 2012, C. Kost, T. Schlegl

1 € = 1.3 AUD

Final remarks



Prerequisites for an effective transformation of our energy systems towards sustainability

- Low cost generation of energy from renewable sources
- Sustainable production, installation and recycling of components and systems
- Efficient integration of fluctuating renewable energies into electricity supply systems – empowering grids, integration of storage systems
- In all sectors: efficient use of energy
- Smart financing, market design, emission trading
- International co-operation

Thank you for your attention

Parameters for cost calculations

	PV	PV	Wind	Wind	PV	PV	CSP
	Klein	Groß/Fläche	Onshore	Offshore	Klein	Groß/Fläche	
Betriebsdauer	25 Jahre	25 Jahre	20 Jahre	20 Jahre	25 Jahre	25 Jahre	25 Jahre
Eigenkapital-Anteil	20,0%	20,0%	30,0%	40,0%	20,0%	20,0%	30,0%
Fremdkapital-Anteil	80,0%	80,0%	70,0%	60,0%	80,0%	80,0%	70,0%
Eigenkapital-Rendite	6,0%	7,5%	9,0%	14,0%	9,0%	10,5%	12,0%
Fremdkapital-Zins	4,0%	4,5%	4,5%	7,0%	7,0%	7,5%	9,0%
WACC (Weighted Average Cost of Capital)	4,4%	5,1%	5,9%	9,8%	7,4%	8,1%	9,9%
Jährliche Betriebskosten	30 €/kWp	30 €/kWp	0,015 €/kWh	0,030 €/kWh	30 €/kWp	30 €/kWp	0,025 €/kWh
Jährlicher Anstieg der Betriebskosten	2,00%	2,00%	2,00%	2,00%	2,00%	2,00%	2,00%
Jährliche Degression Stromoutput	0,20%	0,20%	0,00%	0,00%	0,20%	0,20%	0,20%

Germany

Spain

Source: Fraunhofer ISE 2012, C. Kost, T. Schlegl

Investments, different technologies

Investition in Euro/KW in 2012					
Technologie	Anlagen	Mittlerer Wert	Untere Grenze	Obere Grenze	Quellen
Photovoltaik	Kleinanlagen bis 10 kWp	1900	1700	2200	
	Großanlagen bis 1000 kWp	1700	1500	1800	BSW Preimonitor (2012), Fraunhofer ISE (SCost-System)
	Freiflächen ab 1000 kWp	1600	1500	1700	rraunnoier ist (scost-system)
CSP	Parabol 100 MW ohne Speicher	4700	3600	5000	Nevada One, Acciona (Majadas de Tietar)
	Parabol 100 MW mit 8h-Speicher	5400	5200	6600	Andasol1-3 (ES)
	Fresnel 100 MW ohne Speicher	3700	3400	4000	PE2 power station (ES)
	Turm 100 MW mit 8h-Speicher	6500	6000	9000	Crescent Dunes (US), Abengoa (RSA)
Wind	Onshore (1,5 – 2 MW)	1200	1000	1350	EWEA (2009)
	Onshore (2 – 3 MW)	1400	1200	1600	Windguard (2011)
	Offshore (3 – 5 MW)	3200	2700	4000	EWEA (2009), Gerdes (2006), Krewitt (2009), Projekte: Borkum West 2, Baltic1

