Developing Inorganic Thin Film Solar Cells using Earth-Abundant Cu₂ZnSn(S,Se)₄ Absorber Materials based on Sputtering Process

February 21. 2018

Jin Hyeok Kim

Department of Materials Science and Engineering, Chonnam National University, South Korea

Acknowledgement

- **GET-Future Project**
- Lab Members

• KIER Thin Film Lab. • KITECH & DGIST

CHINA

KOREA

Seoul

Daejeon

/eosu

Busan

Gwangju

3¹/₂ hours by car 2 hours by KTX 50 minutes by flight

Started at 1952

JAPAN

Chonnam National University

16 Colleges & 11 Graduate Schools

Gwangju Campus

Agriculture and Life Sciences, Natural Science, Pharmacy, Medicine, Dentistry, Nursing, Veterinary Medicine, Law, Business Administration, Education, Humanities, Arts, Human Ecology, Engineering, Social Sciences

Ranked 2nd or 3rd among National Universities 10th of 11th including Private Universities

Yeosu Campus

Fisheries & Ocean Sciences,

Culture & Social Sciences,

Engineering Sciences

CNU-Campus

http://www.jnu.ac.kr

2009 Z February 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Outline

Outline

Global Warming

Glacier in Paragona, Argentina

http://www.treehugger.com/slideshows/clean-technology/7-terrifying-global-warming-pictures/#slide-top

New & Renewable Energy

Solar Irradiation vs Established Global Energy Resources

FOSSIL FUELS ARE EXPRESSED WITH REGARD TO THEIR TOTAL RESERVES WHILE RENEWABLE ENERGIES TO THEIR YEARLY POTENTIAL.

Source: "Solar Photovoltaic electricity empowering the world", EPIA, 2011 DLR, IEA WEO, EPIA's own calculations.

Utilization of Solar Energy

http://uk.solarcontact.com

Photovoltaic (Solar Cell)

http://ko.depositphotos.com/

http://www.spicciagroup.net/img/water_splitting.png

Photovoltaic Overview

Solar PV Global Capacity and Annual Additions, 2006-2016

During 2016, at least 75 GW of solar PV capacity was added worldwide – equivalent to the installation of more than 31,000 SOLAR PANELS EVERY HOUR.

Source: RENEWABLES 2017 GLOBAL STATUS REPORT, REN21, 2017

ThinFilm

Global PV Market Forecasting

82

79

(Unit: GW) 2017년 2018년 2019년 2020년 2021년 Annual Installation Capacity (HIS, 2017)

10

Progress in Solar Cell Efficiency

DThinFilm

&ELab.

Why Cu₂ZnSn(S,Se)₄ (CZTSSe)?

Issues in Inorganic Compound Thin Film Solar Cells Expensive & Toxic

Low-cost and eco-friendly process with high efficiency

- High absorption coefficient (~10⁴ cm⁻¹)
- Suitable optical band-gap E of (1.0~1.5 eV)
- Environmental friendly (non-toxic)
- Chemical abundance

Why Cu₂ZnSn(S,Se)₄ (CZTSSe)?

-19-

Cost for CIGS PV System

ThinFilm

Progress in Cell Efficiency in CZTSSe system

)ThinFilm

& Elab

Why Cu₂ZnSn(S,Se)₄ (CZTSSe)?

Still too low cell efficiency compare to CIGS!!

Cu(In,Ga)(S,Se)₂ (η = 22.6%) Cu₂ZnSn(S,Se)₄ (η = 12.6%)

Think about History on Technology Development!

Evolution of Cell Efficiencies in CIGS & CZTS

&ELab

Recent Publications based on Methods

Major Results from World-Leading Groups

Institute	Materials	Process	Annealing condition	η (%)	Eg (eV)
Jilin University Bin Yao	CZTSSe	Sputtering	Sulfurization followed by selenization Ar atmosphere, 540 °C, 30 min	11.53	1.16
	CZTSSe	Spin-coating	Control of selenization time and temperature N ₂ atmosphere, 500-600 °C, 5-30 min	7.48	1.05
Nankai University Y. Zhang	CZTSe	Sputtering	Different Se vapor composition Se & Ar atmosphere, 560 °C, 15 min	10.41	1.03
	CZTSSe	Sputtering	Depletion region control Se & Ar atmosphere, 570 °C, 15 min	10.23	1.13
	CZTSe	Electrodeposition	N ₂ atmosphere, 500 °C, 10 min	8.2	
IBM David B. Mitzi <i>Adv. Energy Mater.</i> 2014 , <i>4</i> , 1301465	CZTSe	Evaporation	Se & N ₂ atmosphere, 590 °C	11.6	1.00
	CZTSSe	Solution based	Hydrazine-based pure solution 500 °C	12.6	1.13
IREC Edgardo Saucedo EES, DOI: 10.1039/c7ee02318a	CZTSe	Sputtering	Two step annealing process Se & Sn containing atmosphere 400 °C, 30min. / 550 °C, 15 min	10.1	1.04
	CZGTSe	Sputtering	Two step annealing process Se & Sn containing atmosphere 400 °C, 30min. / 550 °C, 15 min	11.8	
UNSW Xiaojing Hao – ACS Energy Lett. 2017, 2, 930–936	CZCTS	Sputtering	Cd doping S & SnS atmosphere 560 °C	11.5	13.8
	CZTS	Sputtering	Zn _{1-x} Cd _x S buffer S atmosphere 560 °C	9.2	1.50
T JI LEU R L					This Ciles

Major Results from World-Leading Groups

6

GREEN ET AL.

TABLE 4 "Notable exceptions": "Top 10" confirmed cell and modul(1000 Wm⁻²) at 25°C (IEC 60904-3: 2008, ASTM G-173-03 global)

TAICS

WILEY-PHOT

"Top 10" confirmed cell and module results ^{Jm}

Classification	Efficiency, %	Area, cm ²	V _{oc} , V	J_{sc} , mA/cm ²	Fill Factor, %	Test Centre (date)	Description
Cells (silicon)							
Si (crystalline)	25.0 ± 0.5	4.00 (da)	0.706	42.7 ^a	82.8	Sandia (3/99) ^b	UNSW p-type PERC top/rear contacts ³⁷
Si (crystalline)	25.8 ± 0.5 ^c	4.008 (da)	0.7241	42.87 ^d	83.1	FhG-ISE (7/17)	FhG-ISE, n-type top/rear contacts ³⁸
Si (large)	26.6 ± 0.5	179.74 (da)	0.7403	42.5 ^e	84.7	FhG-ISE (11/16)	Kaneka, n-type rear IBC ³
Si (multicrystalline)	22.0 ± 0.4	245.83 (t)	0.6717	40.55 ^d	80.9	FhG-ISE (9/17)	Jinko solar, large p-type ³⁹
GalnP	21.4 ± 0.3	0.2504 (ap)	1.4932	16.31 ^f	87.7	NREL (9/16)	LG electronics, high bandgap ⁴⁰
GaInAsP/GaInAs	32.6 ± 1.4 ^c	0.248 (ap)	2.024	19.51 ^d	82.5	NREL (10/17)	NREL, monolithic tandem
Cells (chalcogenide)							
CIGS (thin-film)	22.6 ± 0.5	0.4092 (da)	0.7411	37.76 ^f	80.6	FhG-ISE (2/16)	ZSW on glass ⁴¹
CIGSS (cd free)	22.0 ± 0.5	0.512 (da)	0.7170	39.45 ^f	77.9	FhG-ISE (2/16)	Solar frontier on glass ¹⁰
CdTe (thin-film)	22.1 ± 0.5	0.4798 (da)	0.8872	31.69 ^g	78.5	Newport (11/15)	First solar on glass ⁴²
CZTSS (thin-film)	12.6 ± 0.3	0.4209 (ap)	0.5134	35.21 ^h	69.8	Newport (7/13)	IBM solution grown ⁴³
CZTS (thin-film)	11.0 ± 0.2	0.2339(da)	0.7306	21.74 ^e	69.3	NREL (3/17)	UNSW on glass ¹²
Cells (other)							
Perovskite (thin-film)	22.7 ± 0.8^{i}	0.0935 (ap)	1.144	24.92 ^d	79.6	Newport (7/17)	KRICT ¹⁵
Organic (thin-film)	12.1 ± 0.3^{k}	0.0407 (ap)	0.8150	20.27 ^e	73.5	Newport (2/17)	Phillips 66

Progress in Phovoltaics DOI: 10.1002/pip.2978

Research Activities in Korea

Institute	Materials	Process	Annealing condition	η (%)	Eg (eV)
DGIST J. Mater. Chem. A 2016, 4, 10151	CZTSSe	Sputtering	SeS ₂ /Se Graphite box 300°C 1000sec. / 510°C 1100sec.	13.7 12.3	1.097
KAIST	CZTS	Sputtering S vapor 580°C 30min.		4.59	1.5
KIER	CZTSe	Co-evaporation	-	6.14	1.2
KIST (SNU*)	CZTSSe	Electrodeposition	Se powder H_2 S gas 550°C 15min.	9.9	1.14
Dongguk University	CZTSSe	Sputtering	S vapor 580°C 5min	6.98	1.5
SKKU	CZTS	Co-sputtering	H ₂ S gas 550°C 1 hour	6.75	-
Yeungnam University	CZTSe	Sputtering	Se vapor 500°C 10min.	5.8	1.06
Yonsei University	CZTS	Hybrid ink-derived spin-coating	H ₂ S atmosphere, 550°C, 30min	8.17	1.46
Chonnam National University	CZTSSe	Sputtering	Controlling Chamber Pressure 500 Torr, S & Se vapor, 540°C, 7min 30sec	11.8	1.0
Green Chem., 2016, 18, 700-711	CZTSSe	Sputtering	Soft Annealing Process 300°C 1hour, 580°C 10min	9.24	0.99
*Present affiliation					

Outline

Preparation of Absorber Layers

-29-

<u>ThinFilm</u>

&ELah

Preparation of Absorber Layers

Sputtering

Sulfo-selenization using RTP

-30-

Preparation of Each Single Layers

Single layer deposition using metal targets

Difficult to control the uniformity of Zn and Sn unit layers by adjusting process parameters (power, pressure)

Preparation of Stacked Precursor Thin Films

Reasonably possible to control the uniformity by adjusting process parameters (power, pressure, temperature)

-32-

Solar Cell Fabrication Process

Solar Cell Fabrication in Parlab.

RF sputter CBD **RTA** Sputtering Grid Window (n-type) Window (n-type) **Buffer Buffer Buffer** Cu Absorber (p-type) Absorber/(p-type) Absorber (p-type) Sn CZT\$ absorber Zn **Back contact Back contact Back contact Back contact Back contact** Substrate (SLG) Substrate (SLG) Substrate (SLG) Substrate (SLG) Substrate (SLG) CZTS(~1µm) CdS (~60 nm) AI (~1μm) Precursor (~1 μ m) n-AZO/i-ZnO (500nm/50nm)

Evaporation

Photo Images of Samples

Fabrication of a CZTS TFSC

Cross-sectional TEM image

Cell efficiency of a CZTS TFSC

- · Low shunt resistance
- Low diffusion current
- High recombination rate
- High series resistance

Processing Parameters to Be Controlled

Evolution of Cell Efficiency in our Lab.

ThinFilm

Key issues in improving Cell Efficiency

-39-

선남내학교

DThinFilm

&ELah

Major Three Steps in Improving Cell Efficiency

1 STEP

Reproducible Annealing Processing

- Tube type RTA
- Chamber type RTA
- Easy to control annealing variation (Process pressure control, S/Se powder)
- Film uniformity
- High vacuum condition (pure atmosphere)

2 STEP

Introducing Soft Annealing Treatment

· Formation of metal alloy using the soft annealing process

 Controlling composition of absorber layer ratio using the precursor deposition time

· Optimization of annealing condition by varying external partial pressure

Optimization of CdS buffer layer

· Controlling deposition temperature and deposition time

Improving Reproducibility in Annealing Process

- By introducing a chamber type RTA

- Easy to control annealing parameters (Process pressure control, S/Se powder)
- Uniform film formation
- High vacuum condition (pure atmosphere)

Improving Reproducibility in Annealing Process

By introducing a chamber type RTA and Optimization

-42-

Optimization of Composition of Absorber Layers

Controlling absorber layer composition ratio

Optimization of Composition of Absorber Layers

Formation of metal alloy during the soft annealing process

Green Chem., 2016, 18, 700-711

Ш

HONNAM NATIONAL UNIVERSITY

PThinFilm &ELab

Preheating 500°C

SEM images after sulfo-selenization process

Cell Performance & EQE of CZTSSe TFSCs

Comparison between two cells w/wo soft annealing

-50-

- S & Se vapor escapes easily in low external pressure condition
- Minimize Sn loss

-54-

Partial Pressure Control during Sulfo-selenization Process

-57-

Varying deposition time at $T_{dep} = 60 \text{ °C}$

Optimization of CdS deposition time

Solar cell TEM image

Optimization of CdS deposition time

ThinFilm

&ELab

DThinFilm

&ELab

Varying deposition time at T_{dep} = 60 °C

-63-

Varying deposition time at T_{dep} = 80 °C

Deposition time	V _{oc} (V)	l _{sc} (mA)	J _{sc} (mA/cm²)	FF (%)	η(%)	R _s (ohm)	R _{sh} (ohm)
MG654-1 (8.5 min.)	0.455	10.16	33.86	0.50	7.79	11.35	666.66
MG655-1 (10.5 min.)	0.472	9.70	32.35	0.54	8.33	10.52	1000.00
MG656-1 (12.5 min.)	0.489	9.68	32.27	0.58	9.30	8.49	200.00
MG657-1 (14.5 min.)	0.495	9.27	30.91	0.59	9.12	8.37	2000.00

-64-

Comparison of J-V & EQE Results

3. Fine tuning on a CdS buffer layer

Fabrication of a CZTSSe Submodule

P1: Mo, P2: CZTS absorber, CdS and i-ZnO layers, P3: AZO

-66-

Fabrication of a CZTSSe Submodule

Sample size: 5 X 5 cm²

Fabrication of a CZTSSe Submodule

-68-

Operation of a CZTSSe Submodule

Size of a submodule is 25 cm² (5X5 cm²)

Outline

Fabrication of solar cell by sputtering

Best efficiency result

ThinFilm &ELab

Cross-sectional BF-TEM image

STEM-HAADF Elemental Mapping Result

STEM EDS Line Scan Data

Technical Issues to Improve Cell Efficiency

Minimizing bulk recombination

- Cation disorders
- Srain boundaries
- Minimizing interfacial recombination
- ▲ Absorber/Buffer
- Absorber/Mo interface

Minimizing photon loss
Wide band-gap TCO
Optimization of grid structure
Cd-free Zn(O,S) buffer layer
Thin buffer
Anti-reflection coating

Optimization of R_s & R_{sh}
Improving junction quality
Carbon layer (Mo/CZTS)
Diffusion barrier (Mo/CZTS)
Defect control

V_{oc} deficit in CZTSSe devices

• V_{oc} deficit is the most performance-limiting factor

This slide is modified using a presentation material of Prof. B.H. Shin at KAIST

V_{oc} deficit in various PV technologies

Material		Eff. (%)	J _{sc} (mA/cm²)		FF (%)	V _{oc} (mV)	E _g (eV) V _{oc} defic (mV)	
Crystalline Si		25.6	41.8		82.7	740	1.1	360
GaAs		28.8	29.68		86.5	1122	1.42	298
CIGSe		22.6	37.8		80.6	741	1.1	359
CdTe		22.1	31.69		78.5	887	1.5	613
CdTe		13.6	21.7		61.7	1017	1.5	483
(FA,MA)Pb(I,Br) ₃		22.1	24.97		80.3	1105	1.49	385
Material	Eff. (%)	J _{sc} (mA/cm²)	FF (%)	V _{oc} (mV)	V _{oc} deficit (mV)	Year	Description	
CZTSSe	12.6	35.2	69.8	513	617	2013	IBM, hydrazine	
CZTS	8.4	19.5	65.8	661	789	2013	IBM, thermal co-evaporation	
CZTSe	11.6	40.6	67.3	423	578	2014	IBM, thermal co-evaporation	
CZTSe	8.65	30.89	61.3	457	543	2017	KAIST, co-evaporation*	
CZTSSe	11.2	36.5	63.8	479	570	2015	EMPA, spin-coating	
CZTSe	9.6	-	-	489	560	2016	IREC, sputtering	
CZTSSe	10.3	31.6	64.6	505	525	2017	DGIST, Sputtering	
CZTSSe	11.8	37.5	64.9	485	585	2016	JNU, Sputtering	

This slide is modified version of Prof. B.H. Shins's at KAIST

*J. Kim, et al., PIP, 2017; 25:308–317

Two major origins for V_{oc} deficit

Interface Absorber/Buffer Absorber/Mo back contact

Defects Bulk Defects: Cu_{Zn}⁺, V_{Cu}⁺, Zn_{Cu}⁻, Sn_{Zn}²⁻ Grain boundary Secondary phases

Electrostatic Potential Fluctuation

deep trap and band tail states T. Gokmen et. al., APL103, 103506 (2013)

Various approaches to improve V_{oc} deficit

Origins of V_{oc} **deficit: GBs, Interfaces, Defects**

Results in Low MCCLT, electrostatic potential fluctuations, and tail states

Can be Minimized by Passivation, Doping, Post Annealing Treatment

(reducing secondary phases)

Deposition of Ag layer on precursors using e-beam evaporation (10, 20, 30, 40 nm)

Deposition time	V _{oc} (V)	I _{sc} (mA)	J _{sc} (mA/cm²)	FF (%)	η(%)	R _s (ohm)	R _{sh} (ohm)
MG651 (Without Ag)	0.474	10.46	34.89	0.58	9.71	8.82	1000.00
MG645 (Ag 10nm)	0.384	10.54	35.13	0.41	5.58	19.80	142.85
MG647 (Ag 20nm)	0.452	9.89	32.96	0.50	7.58	13.82	666.66
MG649 (Ag 30nm)	0.340	10.93	36.46	0.46	5.77	11.56	166.66

Need to change the amount of Cu

✓ Thickness of Ag : 20 nm

✓ Control of the Cu composition ratio

Sample Number	Gas flow	Process Power			Process	Time (sec)		
	Ar	Zn	Sn	Cu	pressure	Zn	Sn	Cu
1	30sccm	30W	30W	30W	8mtorr	2006	2015	2812
2								2712
3								2612
4								2512
5								2412

ThinFilm

Controlling the amount of Cu

PThinFilm &ELab.

Summary

11.8% CZTSSe thin film solar cells without additional treatment to minimize V_{oc} deficit could be fabricated successfully

NEXT STEP

- Doping: minimizing bulk cation disorder
- Passivation: top and bottom interface of the absorber
- Band gap grading: minimizing recombination loss
- Harvesting: controlling the photon loss, carrier collection

Fabrication of CZTSSe thin film solar cells with WORLD BEST efficiency !!

Thin Film

&E Lab.

300 Yongbong-Dong, Puk-Gu, Gwangju Department of Materials Science and Engineering Chonnam National University TEL: 82-62-530-1709 E-MAIL: jinhyeok@jnu.ac.kr

Copyright © 2013 Photonic and Electronic Thin Film Laboratory, Chonnam National University. All Right Reserved.

COULTAM DATIONAL UNITED IT

Thank you

Why Cu₂ZnSn(S,Se)₄ (CZTSSe)?

Crystal structures of semiconductor materials. (Courtesy of Dr. Bryce Walker)

http://www.pveducation.org/es/fotovoltaica/czts

Issues in CIGSSe Thin Film Solar Cells

Low-cost and eco-friendly process with high efficiency

-89-

