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Excitons

• Organic materials have small permittivity εr

• Coulomb interaction strong, electron-hole binding energy large, 
>kBT

• Charge carriers do not readily separate

• Electron-hole pair moves together as electrically-neutral 
quasiparticle that carries energy: the exciton

• Exciton must dissociate into e- and h+ at an interface between 
materials

• Exciton readily recombines on short timescale (~ns)



Förster Resonance Energy Transfer (FRET)

• Exciton acts as oscillating dipole

• Dipole-dipole coupling between exciton and electron in ground 
state allows energy transfer via near-field radiationless
mechanism
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• Exciton instantly hops



Förster Radius R0

• R0 is characteristic distance where FRET efficiency
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From theory:
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FRET and Dissociation



Kinetic Monte Carlo (KMC)

• Stochastic method for simulation evolution of system over time 
(built-in clock)

• Allows tracking of trajectories of individual entities

• We use First Reaction Method (FRM)



System

• Cubic lattice, spacing 1 nm

• Each site is a certain 
material (e.g. P3HT)

• Excitons exist on sites

• Site occupancy limited to 1

• Where site is adjacent to 
another site of a different 
material, it is an interface 
site



Events

• Hop via FRET: 𝑘𝐹𝑅𝐸𝑇 =
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• Recombination: 𝑘𝑟𝑒𝑐𝑜𝑚𝑏 =
1

𝜏

• Generation: 𝑘𝑔𝑒𝑛 = 10 s-1 per lattice site (equivalent to AM1.5)



Dissociation

• Treated differently to other events

• When executed event places an exciton at a boundary site, 
probability p that the exciton instantly dissociates, otherwise no 
effect



KMC Queue

• Queue is chronologically ordered list of events

• Events are executed in order

• When event occurs, newly enabled events added to queue

• Time until event i occurs 𝑡𝑖 = −
1

𝑘𝑖
ln(𝑢) where u in range (0, 1]

• This draws times from exponential distribution

• For mutually exclusive events, e.g. hopping, only shortest time 
need be inserted into queue



KMC Method

• Remove invalid events from start of queue

• Execute first (valid) event, i

• Reduce times for all other events by ti

• Add newly enabled events

• Repeat



Material Values

Materials Q0 (%) L (nm) Exciton lifetime (ns) σ (eV)

P3HT 25 15 [2] 0.9 [5] 0.06

PCBM 8.3 x 10-2 [1] 9 [3] 1.4 [1] 0.09

DIBSq - 3 [4] 4.9 [5] 0.05
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Unreferenced values have been determined from our experimental work



Förster Radii

R0 (nm)
Energy acceptor

P3HT PCBM DIBSq

Energy 

donor

P3HT 2.3 2.7 5.0

PCBM - 2.3 1.2

DIBSq - - 1.1

• Heterotransfer R0 was calculated based on absorption and fluorescence measurements

• Homotransfer R0 was calculated based on exciton diffusion length and energy disorder



Absorption and Fluorescence Spectra



Energy Levels



FRET and Dissociation in Binary BHJs

• Most KMC models ignore heterotransfer

• We study fraction of dissociated excitons that underwent 
heterotransfer



FRET and Dissociation in Binary BHJs

• We also vary p for each side of the interface and observe the 
effect on the exciton dissociation efficiency η



Binary BHJ Morphologies

Random F = 15 nm F = 31 nm

Feature size F = 3 V / A



η in P3HT:PCBM BHJ

With Heterotransfer Without Heterotransfer



Difference (Without minus With)



Dissociated Excitons That Undergo 2 Step 
Dissociation in P3HT:PCBM BHJ

Experimental evidence:
Lloyd et al. (2008)

Hole transfer very fast, electron transfer is slower



η in Ternary BHJs

• Can also make ternary BHJ structures

• We use DIBSq as our third material

• Random interface sites replaced with DIBSq



Exciton dissociation efficiency vs DIBSq
concentration for various feature sizes (P3HT)
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• FRET helps with exciton 
dissociation, allowing for 
larger feature size, which is 
better for charge extraction

• Dissociation efficiency η as 
function of DIBSq
concentration

F = 14, 15, 31 nm



Exciton dissociation efficiency vs DIBSq
concentration for various feature sizes (P3HT)

• FRET helps with exciton 
dissociation, allowing for 
larger feature size, which is 
better for charge extraction

• Fraction of excitons that 
dissociate at a DIBSq
interface
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