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Excitons

» Organic materials have small permittivity €

« Coulomb interaction strong, electron-hole binding energy large,
>kgT

« Charge carriers do not readily separate

 Electron-hole pair moves together as electrically-neutral
guasiparticle that carries energy: the exciton

* Exciton must dissociate into e- and h* at an interface between
materials

 Exciton readily recombines on short timescale (~ns)



FOrster Resonance Energy Transfer (FRET)

« EXxciton acts as oscillating dipole

* Dipole-dipole coupling between exciton and electron in ground
state allows energy transfer via near-field radiationless
mechanism
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Forster Radius R, KrRET = %(%)

* R, Is characteristic distance where FRET efficiency

k 1 1
e = —where kyecomp = =

KrRET+Krecomb 2 T

EFRET —

Intensity

Donor fluorescence

Acceptor absorption

From theory:
¢ 9000 Qo(In 10)k?

R —
0 128 w5n4N,

Wavelength



FRET and Dissociation
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Kinetic Monte Carlo (KMC)

 Stochastic method for simulation evolution of system over time
(built-in clock)

* Allows tracking of trajectories of individual entities
* We use First Reaction Method (FRM)
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System

 Cubic lattice, spacing 1 nm

 Each site Is a certain
material (e.g. P3HT)

* Excitons exist on sites
* Site occupancy limited to 1

* Where site Is adjacent to
another site of a different

material, it Is an interface
site




1 AE <0

* Hop via FRET: kprpr = %(&)6 X9 exp (_ A_ET) AE > 0

1

* Recombination: kyecomp = -

- Generation: k ., = 10 s per lattice site (equivalent to AM1.5)



Dissoclation

 Treated differently to other events

* When executed event places an exciton at a boundary site,
probability p that the exciton instantly dissociates, otherwise no
effect
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KMC Queue

* Queue Is chronologically ordered list of events
* Events are executed in order
 When event occurs, newly enabled events added to queue

* Time until event | occurs t; = —%ln(u) where u in range (0, 1]

l

 This draws times from exponential distribution

* For mutually exclusive events, e.g. hopping, only shortest time
need be inserted into queue



KMC Method

 Remove Iinvalid events from start of queue
« Execute first (valid) event, |

* Reduce times for all other events by t.

« Add newly enabled events

* Repeat



Material Values

Materials Qo (Y0) L (nm) |Exciton lifetime (ns) |o (eV)
P3HT 25 15 [2] 0.9 [5] 0.06
PCBM 8.3x 1072 [1] |9[3] 1.4 [1] 0.09
DIBSq - 3 [4] 4.9 [5] 0.05

Unreferenced values have been determined from our experimental work
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Forster Radil

R. (nM) Energy acceptor
nm
° P3HT PCBM DIBSq
P3HT 2.3 2.7 5.0
Energy PCBM : 2.3 1.2
donor
DIBSq : : 1.1

» Heterotransfer R, was calculated based on absorption and fluorescence measurements
« Homotransfer R, was calculated based on exciton diffusion length and energy disorder
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FRET and Dissociation in Binary BHJs

* Most KMC models ignore heterotransfer

* We study fraction of dissociated excitons that underwent
heterotransfer
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FRET and Dissociation in Binary BHJs

* We also vary p for each side of the interface and observe the
effect on the exciton dissociation efficiency n
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dissociation probability PCBM (%)
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Difference (Without minus With)
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Dissoclated Excitons That Undergo 2 Step
Dissociation in PSHT:PCBM BHJ
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Experimental evidence:
Lloyd et al. (2008)
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Hole transfer very fast, electron transfer is slower



n in Ternary BHJs

e Can also make ternary BHJ structures
* We use DIBSq as our third material

« Random interface sites replaced with DIBSq



Exciton dissociation efficiency vs DIBSq
concentration for various feature sizes (P3HT)
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Exciton dissociation efficiency vs DIBSq
concentration for various feature sizes (P3HT)

 FRET helps with exciton
dissociation, allowing for
larger feature size, which is
better for charge extraction

* Fraction of excitons that
dissociate at a DIBSq
Interface
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