

Scanning Probe Microscope: A powerful Tool for Imaging Nanoscale Charge Transport Properties

Never Stand Still

Faculty of Engineering

neering S

School of Photovoltaic and Renewable Energy Engineering

Jae Sung Yun

Australian Centre for Advanced Photovoltaics Fellow UNSW, Australia

CONTENTS

- **1. Introduction to Scanning Probe Microscopy**
- 2. Atomic Force Microscopy
- **3. Kelvin Probe Force Microscopy**
- 4. Contact Potential Difference
- 5. Surface Photovoltages
- 6. FAQ

MOTIVATION

Crystalline Si thin film on Glass (CSG) Technology

Any method to observe PV characteristics of structural defects in nanoscale? "Spatial resolution of few tenth of nanometre is

School of Photovoltaic and Renewable Energy Engineering

J. Yun, et al. Appl. Phys. Lett. 2014

ATOMIC FORCE MICROSCOPY

VOLUME 56, NUMBER 9

PHYSICAL REVIEW LETTERS

3 MARCH 1986

Atomic Force Microscope

G. Binnig^(a) and C. F. Quate^(b) Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305

and

Ch. Gerber^(c) IBM San Jose Research Laboratory, San Jose, California 95193 (Received 5 December 1985)

F. Giessibl, Rev. Mod. Phys. 75, 949 (2003)

"Atomic interaction between tip and the sample"

NON-CONTACT MODE AFM

- 1. Vibration at slightly above the resonance frequency of probe.
- 2. Rise to shift of the resonance frequency due to the interaction.
- 3. The changes in the oscillation amplitude are monitored and the feedback signals keeps constant the force gradient.

Surface Science Reports 66 (2011) 1-27

KELVIN PROBE FORCE MICROSCOPY

Przegląd Elektrotechniczny 91.9 (2015): 166-169.

1st pass \rightarrow Height **2nd pass** \rightarrow CPD

Imaging height signal and CPD signal at the same spot!

An **electrostatic force** exists between tip and sample due to work function difference and **DC voltage** is applied to **nullify** the force. ><u>1 nm and >1 mV spatial resolution</u>

CPD measures work function of a sample surface

What does this mean to us?

Advanced Energy Materials 8 (23), 1701940

School of Photovoltaic and Renewable Energy Engineering

Advanced Energy Materials 8 (23), 1701940

What made a shift of work function?

Charge carrier density, bandgap, surface states, surface dipole, crystal orientation
It is always good to have results from other techniques such as SIMS, TEI

XRD, etc.

School of Photovoltaic and Renewable Energy Engineering

J. Yun et al. Advanced Energy Materials 6 (13), 1600330

Nature Communications 6, 7497 (201

Iodide vacancies in halide perovskite changes work

function School of Photovoltaic and Renewable Energy Engineering

ION MIGRATION IN HALIDE PEROVSKITE

0 V

J. Yun et al. Advanced Energy Materials 6 (13), 1600330

Grain boundaries are inflated due to the ion migration

ION MIGRATION IN HALIDE PEROVSKITE

Grain boundaries act as channels for ion migration

DEGRDATION IN HALIDE PEROVSKITE

J. Yun et al. Advanced Functional Materials 28 (3), 1705363

FAPbI3 Perovskite turn into non-perovskite phase at room temperature

DEGRDATION IN HALIDE PEROVSKITE

J. Yun et al. Advanced Functional Materials 28 (3), 1705363

Grains merge and grain boundaries become wide and lower CPD

School of Photovoltaic and Renewable Energy Engineering

DEGRDATION IN HALIDE PEROVSKITE

J. Yun et al. Advanced Functional Materials 28 (3), 1705363

OTHER APPLICATIONS

Philosophical magazine letters 85.1 (2005): 41-49.

Surface photovoltage= CPD_{light}-CPD_{dark}

SPV can be expressed by the density of photogenerated charge carriers ($\Delta n = \Delta p$) and the density of minority charge carriers in thermal equilibrium

Top surface depleted by surface defects? Where is pn junction? What is bandgap?

What is diffusion length?

School of Photovoltaic and Renewable Energy Engineering

Intensity and wavelength dependent KPFM

p-type vs n-type transport layer

NiO_x

J.Yun et al. The journal of physical chemistry letters 6 (5), 875-880

Sub-linear behavior of contact potential difference and open-circuit voltage

Our obtained CPD can be correlated with the open circuit potential under illumination

GRAIN BOUNDARIES IN HALIDE PEROVSKITES

J.Yun et al. The journal of physical chemistry letters 6 (5), 875-880

PHOTOCURRENT MAPPING

J.Yun et al. The journal of physical chemistry letters 6 (5), 875-880

Higher photocurrent at GBs

INORGANIC CATION INCORPORATED PEROVSKITES

 $(FA_{x}Rb_{1-x}PbI_{3})_{0.85}(MAPbBr_{3})_{0.15}$

ACS Energy Letters 2 (2), 438-444

Incoporation of Rb improved efficiency and stability

INORGANIC CATION INCORPORATED PEROVSKITES

ACS Energy Letters 2 (2), 438-444

Cs and Rb forms nanoclusters and have higher SPV!!

School of Photovoltaic and Renewable Energy Engineering

LONG-CHAINED CATION MIXED PEROVSKITES

ACS Energy Letters 3 (3), 647-654

LONG-CHAINED CATION MIXED PEROVSKITES

Reference

Voc↑ with grain size ↓ Enlarged bandgap at the GBs?

ALUMINA PASSIVAI ED UZIS SULAR UELLS

Several nm thick Al₂O₃ layer with trimethylaluminum (TMA) precursor enabled over 10% efficiency!

ALUMINA PASSIVAI ED UZIS SULAR UELLS

Energy Environ. Sci., 2019

Higher response of CPD at both wavelengths when AI_2O_3 is deposited on top of CZTS

CPD UNDER ILLUMINATION

Grain to grain band gap different from halide segregation

CROSS-SECTION KPFM

Nature communications 6 (2015): 7745.

pn junction profile, charge transport properties at each

interface, and band alignment

School of Photovoltaic and Renewable Energy Engineering

SUMMARY

Work function distribution, ion migration, charge transport, surface photovoltage, pn junction properties, and many more!

WHERE IS AFM?

School of Materials Science Several AFMs

Prof. Jan Seidel

Humidity control, different environments, temperature control, tuneable laser, liquid

SPREE- Park System

To be installed soon! KPFM with LED lights, conductive AFM local

IV curve, EFM, PFM, Phase imaging

FAQS

- How long does it take to measure? For instances, 5 x 5 um²?
- 2. How easy is it obtain a high quality CPD image?
- 3. What type of probe to use?
- 4. What sample roughness is allowed?

Acknowledgement

Thanks to

Ziv, Jessica, Ned, Jeana, Shujuan,

Stephen for their contribution!

Of course, SPREE and SPREE people!

Special thanks to: Martin Green (UNSW) Jan Seidel (UNSW)

And many others

Thanks to my collaborators: Sang II Seok (UNIST) Jincheol Kim (KETI) **Dohyung Kim (Tennessee University**) Jun Hong Noh (Korea University) Jeana Hao (UNSW) Anita Ho-Baillie (UNSW) Shujuan Huang (UNSW) Jangwon Seo (KRICT) Jung Ho Yun (UQ)

