Intermediate band materials for high efficiency solar cells: overview and future directions

uOttawa

Jacob J Krich Department of Physics & School of Electrical Engineering and Computer Science

Collaborators

<u>uOttawa</u>

Eduard Dumitrescu

Akshay Krishna

Kyle Robertson

Luc Robichaud

Peter Rose

Anna Trojnar

Josh Wheeler

Matt Wilkins

Daixi Xia

Emily Zhang

Karin Hinzer

Ross Cheriton Alex Walker Jacob J. Krich

US Army Research

Jeff Warrender Quentin Hudspeth Philippe Chow

McGill/Michigan

Zetian Mi Ashfiqua Connie Hieu Nguyen

<u>Stanford</u> Aaron Lindenberg

<u>Middlebury</u>

Renee Sher

<u>Australian National</u> <u>University</u>

Jim Williams Shao Qi Lim Wenjie Yang

Harvard

Bertrand Halperin Michael Aziz Dan Recht Eric Mazur

Toronto

Alán Aspuru-Guzik

<u>MIT</u>

Tonio Buonassisi Austin Akey Christie Simmons **Joe Sullivan** Mark Winkler

<u>University of Dayton</u> Jay Mathews Yining Liu

Present topics in the group

Outline

- Intermediate band solar cells
 - 3 material classes
- Figure of merit
 - Measurements
 - Predictions
- New developments
 - InGaN quantum dots in nanowires
 - Device model

University of Ottawa

IBPV variants

Jacob J. Krich

3 Candidate Materials Classes

Best bulk IBPV devices so far

Jacob J. Krich

Jacob J. Krich

Lee et al., Sol. Energ. Mat. Sol. Cells 2017

ZnO:A

Si

3 Candidate Materials Classes

University of Ottawa

ANU

Benét Labs New York

Benét Labs New York

Slide from Dan Recht

Hyperdoping in Silicon

hydrogen 1	10 (2000) 																5700 X	helium 2
Ĥ		Multiple and the site of the second states of the s																He
1.0079 lithium	bervilium	which materials are promising?												carbon	nitrogen	oxvaen	fluorine	4.0026 neon
3	4													6	7	8	9	10
Li	Be	What doping to use?												С	N	0	F	Ne
6,941	9.0122													12.011	14.007	15,999	18,998	20.180
sodium	magnesium 12													silicon 14	phosphorus 15	16	chlorine 17	argon 18
Na	Mg						AI	Si	Ρ	S	CI	Ar						
22.990	24.305	s a	a a smaller se	T	Y					at also 1			26.982	28.086	30,974	32.065	35.453	39.948
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51,996	54.938	55.845	58,933	58.693	63,546	65,39	69.723	72.61	74.922	78.96	79.904	83.80
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Те		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	56	57-70	71	hatnium 72	tantalum 73	74	rhenium 75	osmium 76	77	78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	84	astatine 85	radon 86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium		174.97 Isserancium	178.49 autherfordium	180.95 dubnium	102.0.1 Seaboraium	186.21 bohrium	190.23 bassium	192.22 moltporium	195.00	196.97	200.59 upupbium	204.38	207.2	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthaniae Series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
* * Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Jacob J. Krich

https://commons.wikimedia.org/wiki/File:Modern_Periodic_Table.jpg

Figures of merit

Devices Absorber materials • Efficiency Band gaps • V_{oc} Absorptivity α • Lifetime τ J_{sc} IB • FF Mobility μ Want: • Absorber only • High predictive value

Indicate when to work on devices

Jacob J. Krich

Krich, Halperin, and Aspuru-Guzik, J App Phys 2012

Drift Device

$$\frac{\tau}{t} \approx \nu_{\rm drift} = \frac{E_g}{q} \mu \alpha^2 \tau$$

Jacob J. Krich

Krich, Halperin, and Aspuru-Guzik, J App Phys 2012

Comparison of figures of merit

Measurable parameters of IB material alone.

Good devices: large v for both electrons and holes.

Jacob J. Krich

Krich, Halperin, and Aspuru-Guzik, J App Phys 2012

Light trapping

Effectively increase α by $4n^2 \approx 47$

Increases v by $(4n^2)^2 \approx 2000$

Figure from Yu et al, PNAS 2010

Jacob J. Krich

Outline

- Intermediate band solar cells
 - 3 material classes
- Figure of merit
 - Measurements
 - Predictions
- New developments
 - InGaN quantum dots in nanowires
 - Device model

THz measurements of carrier lifetime

fs THz study of trapping times in Si:S and Si:Se

Sher, Simmons, Krich, Akey, Winkler, Recht, Buonassisi, Aziz, and Lindenberg, APL 2014

Jacob J. Krich

Jacob J. Krich

v peaks at lower concentration.

Still hyperdoped.

Hole figure of merit not measured.

Sher, Simmons, Krich, Akey, Winkler, Recht, Buonassisi, Aziz, and Lindenberg, APL 2014

Jacob J. Krich

Heyman et al, PR Applied (2017)

University of Ottawa

SCIENTIFIC **Reports**

OPEN Multicolor emission from intermediate band semiconductor ZnO_{1-x}Se_x

Received: 06 December 2016 Accepted: 03 February 2017 Published: 13 March 2017 M. Welna¹, M. Baranowski^{1,2}, W. M. Linhart¹, R. Kudrawiec¹, K. M. Yu^{3,4}, M. Mayer³ & W. Walukiewicz³

Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E₋ and upper E₊ valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the *kp* method combined with the band anticrossing model. The observation of the multiband emission is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.

Outline

- Intermediate band solar cells
 - 3 material classes
- Figure of merit
 - Measurements
 - Predictions
- New developments
 - InGaN quantum dots in nanowires
 - Device model

S. Li and W. Thurber, *Solid State Electronics*, **20**, 609 (1977) Jacob J. Krich

3 Candidate Materials Classes

Jacob J. Krich

Nguyen et al., Nano Lett 2011

Ross Cheriton, PhD thesis, 2018 University of Ottawa

Ross Cheriton, PhD thesis, 2018

Intermediate band device models

Essential to determine requirements for IB absorbers and optimize devices.

Strandberg and Reenaas, PiP 2010

- Radiative recombination only. IB region only, depletion approximation.

Yoshida, Okada, Sano, JAP 2012

– No IB transport.

Martí, Cuadra, Luque IEEE TED 2002

- Diffusive only. Radiative recombination only.

Many detailed-balance based models

Our device model

• 2D

 Finite element – built using FEniCS

 Benchmark against Synopsys Sentaurus

Our device model

Jacob J. Krich

University of Ottawa

1.4

• Model released within the year

 Enable better devices and understanding of IB materials

University of Ottawa

Recap

Intermediate band solar cells

- Great potential
- Need sufficient absorber materials

Figure of merit

- guide materials development
- determine when to make a device

Device modeling

Required to optimize device performance

