

The Effect of Ionic Composition on Acoustic Phonon Speeds in Hybrid Perovskites

Irina Kabakova

School of Mathematical and Physical Sciences University of Technology Sydney

> UNSW, Sydney 17 May 2018

Issue 15, 2018

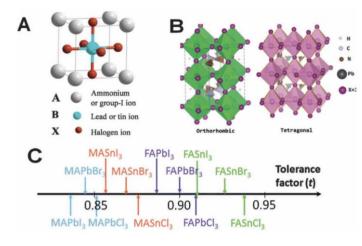
From the journal: Journal of Materials Chemistry C

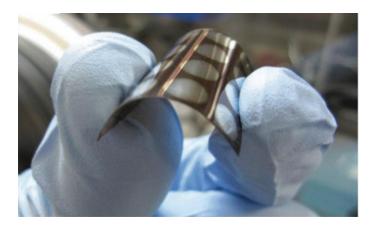
The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory

Irina V. Kabakova,*^{ab} Ido Azuri,^c Zhuoying Chen,^d Pabitra K. Nayak,^e Henry J. Snaith,^e Leeor Kronik,^c Carl Paterson,^a Artem A. Bakulin^f and David A. Egger*^g

Imperial College London

Faculty of Chemistry Materials and Interfaces





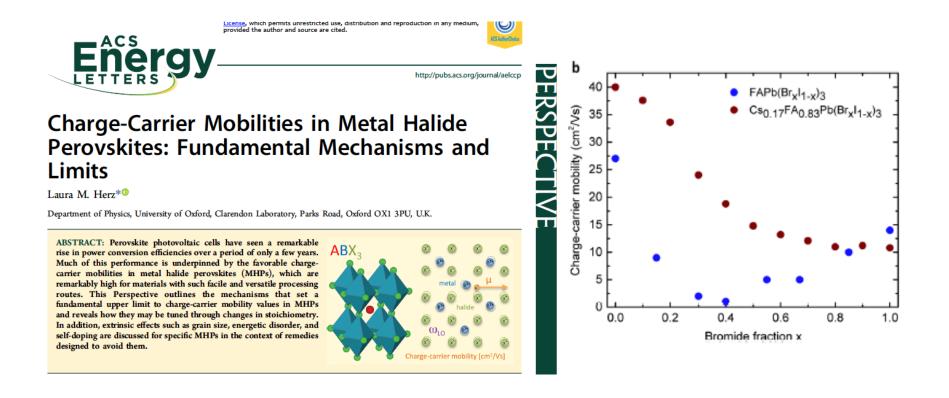
Motivation

Hybrid organic-inorganic perovskites

HOIP applications:

- Solar energy, LEDs, lasers;
- HOIP solar cell efficiency >20%;
- Low cost fabrication;
- Deposition on corrugated/flexible/structured surfaces;

Open questions:


- Mechanical and chemical stability;
- Temperature-related structural changes;
- Role of phonons in the charge-carrier scattering;
- Tailoring electric and mechanical properties by ionic composition.

Zhao&Zhu "Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications," Chem. Soc. Rev. 45, 655 (2016).

Motivation

Ionic composition and charge mobility

- Charge career mobility varies with ionic composition
- Two factors are found to influence charge-career mobility
 - Intrinsic effects charge interactions with the underlying lattice 1.
 - 2. Extrinsic effects – material imperfections (lattice disorder, impurities etc.)

Motivation Elastic properties and charge mobility

ARTICLE

Received 6 Sep 2016 | Accepted 21 Dec 2016 | Published 8 Feb 2017

DOI: 10.1038/ncomms14398

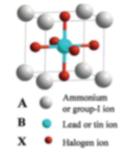
OPEN

Electron-acoustic phonon coupling in single crystal CH₃NH₃PbI₃ perovskites revealed by coherent

acoustic phonons

Pierre-Adrien Mante¹, Constantinos C. Stoumpos², Mercouri G. Kanatzidis² & Arkady Yartsev¹

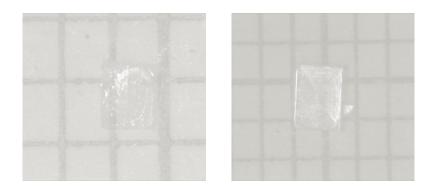
$$\mu = \frac{\left(8\pi\right)^{1/2} \hbar^4 eC}{3\left(m^*\right)^{5/2} \left(k_b T\right)^{3/2} d^2}$$


- Carrier-charge mobility

C - Elastic constant

d - Conductance/valence band deformation potential

GOAL: study mechanical properties of HOIPs with variation of A- and X-sites

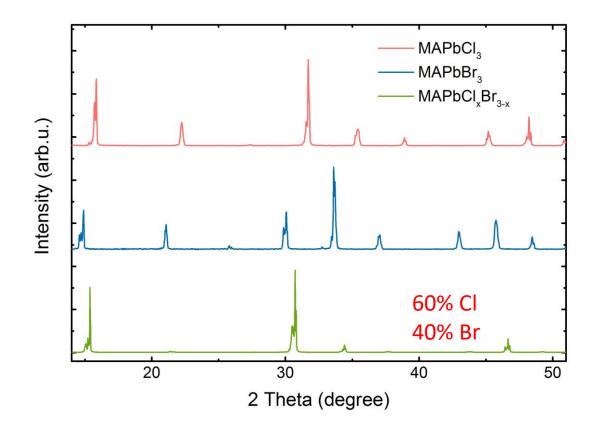

 $\begin{array}{l} \mathsf{MAPbCl}_3 \ \ \mathsf{methylammonium} \ (\mathsf{MA}) \ \mathsf{lead} \ \mathsf{chloride} \\ \mathsf{MAPbCl}_x \mathsf{Br}_{1\text{-}x} \\ \mathsf{MAPbBr}_3 \\ \mathsf{FAPbBr}_3 \ \ \mathsf{formamidinium} \ (\mathsf{FA}) \ \mathsf{lead} \ \mathsf{bromide} \end{array}$

Outline

- Fabrication of samples
- Clarification of mixture crystal composition
- Brillouin spectroscopy measurements
- Density functional theory calculations
- Discussion of the results
- Outlook

Crystal fabrication

- Crystals are prepared by dissolving MACI/MABr and PbCl₂ into solution
- The mixture is kept in an oil bath for 12 hr at 55° C
- Formed crystals are dried under vacuum at 50° C for 6 hours
- Typical crystal size obtained 1m³
- The color varies from transparent (CI) to yellow (CIBr) to bright orange (Br)

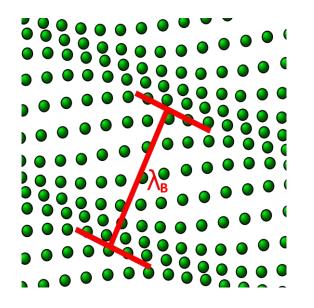

Dr Zhuoying Chen ESPCI Paris

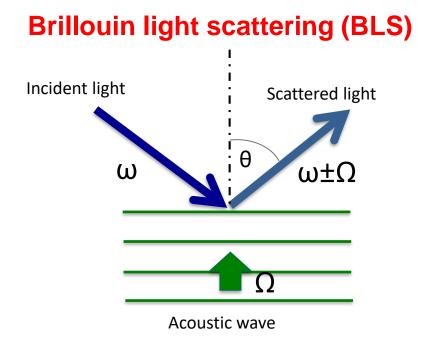
Dr Pabitra Nayak Oxford University

XRD measurements

	2 theta (100)	2 theta (200)	theta (100)	theta (200)	d (100)	d (200)
Cl crystal	15.84	31.71	7.92	15.86	5.59	2.82
mixed Cl-Br crystal	15.37	30.73	7.69	15.36	5.76	2.91
prediction 60%Cl-40%Br	15.46	31.05	7.73	15.52	5.73	2.88
Br crystal	14.90	30.05	7.45	15.02	5.94	2.97

Brillouin light scattering

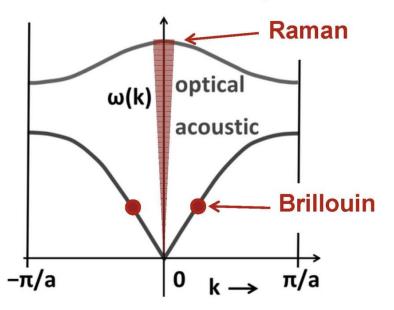

Light


Frequency f ~ 100 THz Speed in vacuum c = $3 \cdot 10^8$ m/s Wavelength λ ~ 500 nm

Sound

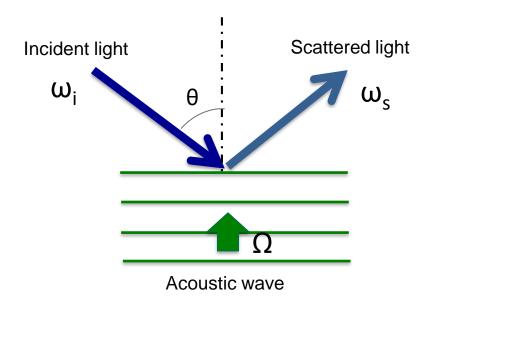
Frequency f ~ MHz-GHz Speed in water v = 1470 m/s Wavelength λ ~500nm (f~GHz)

Thermal pressure waves



Brillouin light scattering

Phonons: Solid State Systems



Transvers Acoustic (TA) Phonon

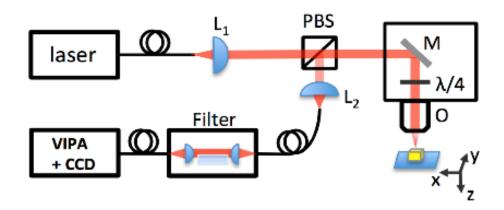
Longitudinal Acoustic (LA) Phonon

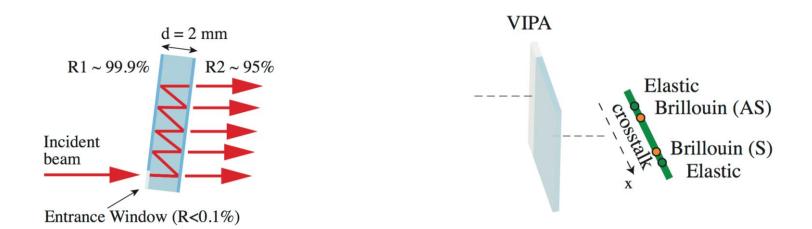
Acoustic waves - collective motion of particles/molecules

Brillouin light scattering in crystals 🕉 UTS

Energy conservation $W_s = W_i \pm W$ Phase matching $k_B @ 2k_i \cos Q$ Brillouin frequency shift

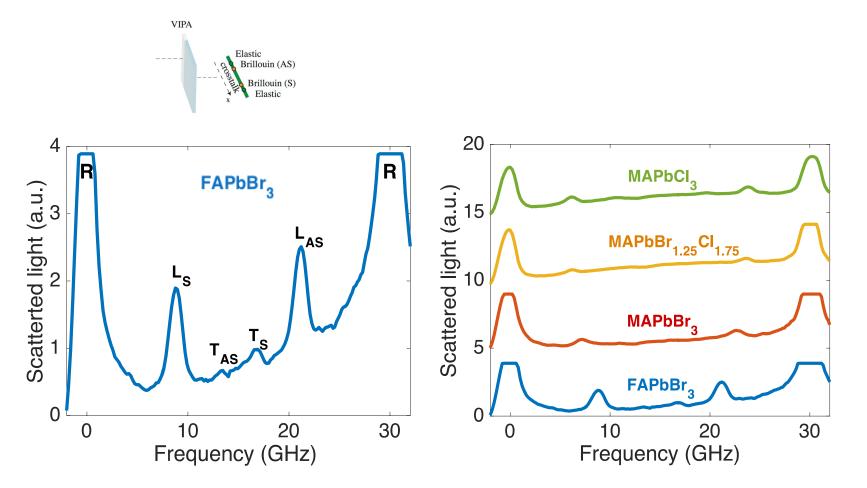
$$W = v \cdot k_B = \frac{4\rho n}{/} v \cos q$$

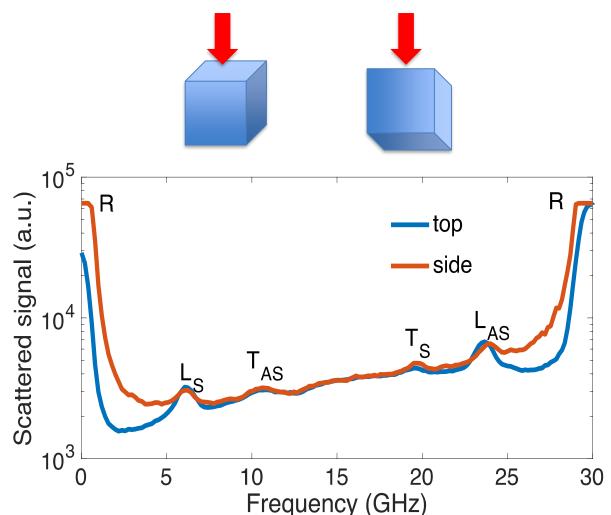

In crystals with cubic symmetry Christoffel's equation holds

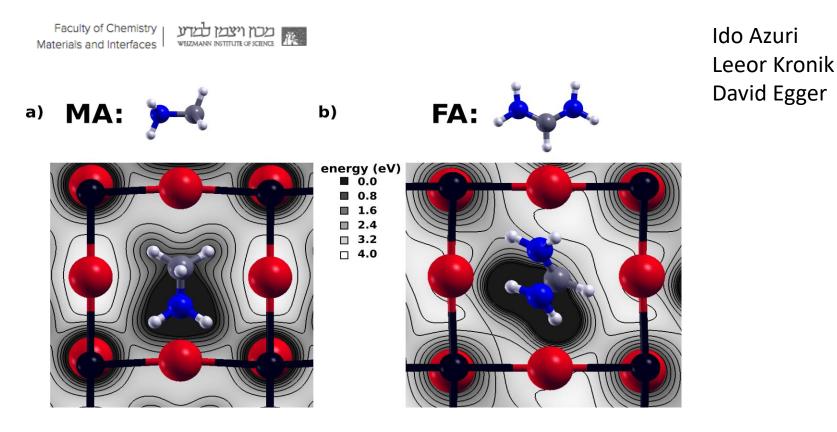

3 independent elastic constants C_{11} , C_{12} , C_{44} and 3 acoustic waves QL, QT, T

$$\det\left[C_{ijkl}n_{j}n_{l}-\Gamma v^{2}O_{ik}\right]=0$$

Experimental setup for Brillouin spectrosc 🕉 UTS




Brillouin measurement results

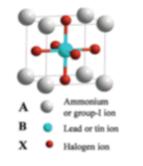

Brillouin measurement results

Brillouin spectra measured from the top and for a 90°-rotated (side) MAPbCl₃ crystal. The difference between the Brillouin shift for each type of the acoustic mode is within ~100-200 MHz.

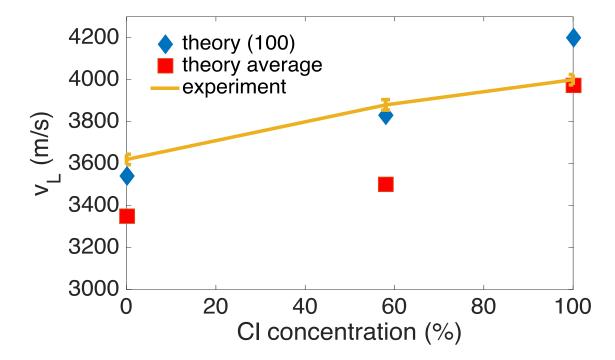
Density functional theory calculatio 🕉 UTS

- Periodic DFT calculations using VASP plane wave code (open source computer program for atomic scale material modeling developed by a research group in Vienna)
- Elastic constants are calculated by perturbation theory as implemented in VASP
- Christoffel's equation is used to obtain acoustic velocities

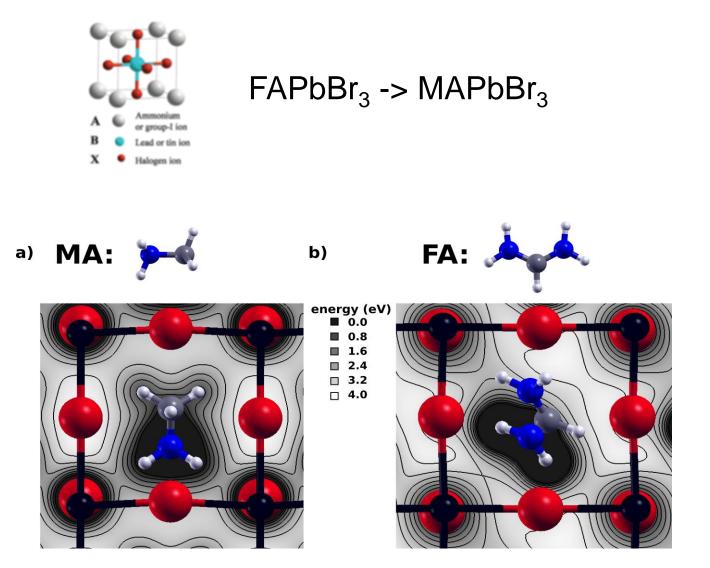
Experiment and theory in comparisc 🕉 UTS


Crystal	Mode	$\mathbf{\Omega}$, GHz	Experiment	Theory v, m/s		
			v , m/s	[1 0 0]	[0 1 0]	[0 0 1]
MAPbCl ₃	QL	23.9±0.1	4000±25	4201	3702	4020
	QT	10.6±0.1	1770±25	1538	1396	1379
	Т	—	_	1205	1260	1255
MAPbBr _{1.25} Cl _{1.75}	QL	23.6±0.1	3880±25	3832	3366	3308
	QT	—	_	1391	1280	1230
	Т	—	_	1090	1162	1159
MAPbBr ₃	QL	22.7±0.1	3620±25	3540	3204	3306
	QT	—	-	1266	1201	1169
	Т	_		1091	1096	1094
FAPbBr ₃	QL	21.2±0.1	3380±25	3482	3535	3529
	QT	13.2±0.1	2110±25	_	—	—

Agreement between theory and experiment within 10% Agreement with previous studies* within 20%


*Letoublon et. al. Phys. Chem. Lett. 2016, 7, 3776-3784 *J. Feng APL Mater. 2014, 2, 081801

Substitution of X-site



 $MAPbBr_3 \rightarrow MAPbCl_xBr_{1-x} \rightarrow MAPbCl_3$

Substitution of A-site

Elastic anisotropy

Crystal	Mode	$\mathbf{\Omega}$, GHz	Experiment	Theory v, m/s		
			v , m/s	[1 0 0]	[0 1 0]	[0 0 1]
MAPbCl ₃	QL	23.9±0.1	4000±25	4201	3702	4020
	QT	10.6±0.1	1770±25	1538	1396	1379
	Т	—	_	1205	1260	1255
MAPbBr _{1.25} Cl _{1.75}	QL	23.6±0.1	3880±25	3832	3366	3308
	QT	—	_	1391	1280	1230
	Т	—	—	1090	1162	1159
MAPbBr ₃	QL	22.7±0.1	3620±25	3540	3204	3306
	QT	—	_	1266	1201	1169
	Т	_	_	1091	1096	1094
FAPbBr ₃	QL	21.2±0.1	3380±25	3482	3535	3529
	QT	13.2±0.1	2110±25	_	_	—

Elastic anisotropy*: $v_T/v_L = 44\%$ for MAPbCl₃ and $v_T/v_L = 62\%$ for FAPbBr₃

*J. Feng APL Mater. 2014, 2, 081801

- Exploring electronic properties and carrier mobility
- Exploring line shape of Brillouin peaks (can be linked to dynamic lattices and non-harmonic phonon states)
- Temperature-dependent study (phase transitions)
- For these all a higher resolution and higher sensitivity Brillouin system is required. This is currently being build at UTS.

Thank you!