

Electrical and Computer Engineering <u>Wide Band Gap III-Nitride</u> <u>Compound Semiconductor Devices:</u> <u>The Universal Solution for Energy Applications</u>

Ian Ferguson

University of North Carolina at Charlotte Department of Electrical and Computer Engineering Charlotte, NC 28223 Email: ianf@uncc.edu

α

Ian Ferguson (ianf@uncc.edu)

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>] UNC CHARLOTTE Electrical and Computer Engineering

EPIC and CRI

Ian Ferguson (ianf@uncc.edu)

Typical EPIC floor plan

Ian Ferguson (ianf@uncc.edu)

UNSW; March 14th 2013 Slide [<#>]

Electrical and Computer Engineering

77

Solar Decathlon House UNCC

http://www.youtube.com/watch?v=j1H6ojXcitY

Ian Ferguson (ianf@uncc.edu)

Solar Decathlon House GaTech

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>] UNC CHARLOTTE Electrical and Computer Engineering

EPIC Education Focus

- Undergraduate Education
 - Energy Concentrations within ME, ECE, CE and ET
 - "Introduction to Energy" for all Engineering students
 - Expand Co-op and Internship program
 - Undergraduate Research Assistance
 - Student participation in Leadership Academy
 - Senior Design Project Energy related
- Graduate Education in Development
 - MBA with Energy concentration
 - Energy certifications in all disciplines retraining
 - Certifications Energy Efficiency, Nuclear, Smart Grid, etc.
 - Energy Certification for Non-engineers
 - Graduate Research Assistance
 - Accredited short courses PE through MS
- Coordination with Regional Universities
 - Concentrations and MS programs

Ian Ferguson (ianf@uncc.edu)

EPIC Applied Research Clusters (1)

- Power Systems Modernization
 - Duke Energy Smart Grid Laboratory with RTDS and system analysis NSF MRI
 - Distribution Automation and Micro-grids
 - Electric Vehicle and Energy Storage Integration
- Large Energy Component Design and Manufacturing
 - Siemens Large-scale Manufacturing Laboratory
 - Materials Characterization Laboratory (MCL)
 - Robotics and Welding Technologies
- Power Infrastructure & Environmental Development
 - Large-structures laboratory and T&D designs
 - Utilization and recycling of spent fuels and emission controls
- Renewables and Energy Efficiency
 - Clean-room with PV cell and LED research
 - Off-shore wind, biomass and small-scale hydro technologies
 - Integration of renewables and energy efficiency measures
- Energy Markets and Systems Engineering
 - Quality Assurance, Nuclear Safety, Regulatory and Standards
 - Distributed energy markets
 - Improved supply chain utilization

Ian Ferguson (ianf@uncc.edu)

EPIC Applied Research Clusters (2)

- The Infrastructure, Design, Environment and Sustainability Center (*IDEAS*) <u>ideas.uncc.edu</u>
 - Development and utilization of biofuels
 - Natural and Built Site Design and Analysis (Green Buildings)
 - Materials Characterization Laboratory (MCL)
 - Environmental impact analysis
 - Environmental Assistance Office for Small Business (EAO)
- Sustainable Integrated Buildings and Sites (<u>SIBS</u>)
 - I/UCRC NSF Center with industry related research
 - PV integration in dense urban settings with limited roof space poor orientation, insurance issues, etc.
 - Optical collectors to guide light into PV building
 - Energy modeling for DSM, energy storage, and renewables
 - Thermal-energy storage for peak-shaving
 - Thermal storage technologies

Ian Ferguson (ianf@uncc.edu)

Founding Industrial Partners in EPIC

Board Members from Representative Organizations:

- Duke Energy
- Siemens
- Westinghouse
- AREVA
- URS Corp
- Shaw Group
- Electric Power Research Institute (EPRI)
- Tessera
- Steag Energy Services

Electrical and Computer Engineering

Vision Statement

Establish a world class research and education program at UNC Charlotte to attract young and talented minds in Science and Engineering to give USA a competitive advantage in the field of Photovoltaic Science, Engineering and Technology

Milestones:

- Conduct high quality research in Renewable Energy to foster fundamental understanding of the science and technology of photovoltaic cells, modules, systems, integration and distribution.
 - Train undergraduate and graduate students
- Establish collaborative research with the industry to develop new materials for photovoltaic devices and serve as an R&D arm of the Photovoltaic industry
- Establish collaborative research with other universities within NC, USA and internationally.
- Establish certificate courses in Renewable Energy to position UNC Charlotte at the fore front in the field.
 - Serve as a training center to provide experience for engineers and scientists.

Area of expertise:

- Silicon solar cell Design, modeling, analysis, fabrication and characterization.
- III-V Light Emitting Diodes Design, modeling, fabrication and characterization

Research Highlight:

- Cost effective and high efficiency solar cells through advanced structures, processes, understanding and reducing the parasitic losses.
- Understanding and improving every layer of a solar cell through optical, electrical, thermal and mechanical characterization of a solar cell
- Development of new and low-cost dielectrics for effective passivation of solar cells
- Development of novel contacting schemes including ink jet printing and light induced plating of Ni/Cu and Ag dip for crystalline silicon solar cell
 - Development and optimization of inline process for ${<}50\,\mu\text{m}$ thick silicon application
- Investigate the microstructures of Ag and Al metal pastes and the liquid phase sintering thereof
 - New module concepts and materials thereof
 - Systems integration and connectors

Previous industry collaboration and funding:

Company name	Period	Amount
Heraeus Inc.	2006-2009	\$609,000
Dupont Electronics	2010-2011	\$200,000
Dow Advanced Electronics	2008-2009	\$125,000
Konca Solar	2010-2011	\$100,000
Despatch Solar	2009-2011	\$200,000
TP Solar	2009-2011	\$60,000
Wuxi Calex	2010-2011	\$180,000
BASF	2006-2011	\$510,000
Air Product	2009-2011	\$180,000
Five Star Technologies	2008-2010	\$260,000
Varian Semiconductors	2009-2010	\$100,000

Number of graduate students envisaged: 10 Number of postdocs: 4

Expected Funds: Industry to start and then DOE and NSF

Associated Publication s

A. Ebong et. al "On the ink jetting of full front Ag gridlines for cost effective metallization of Si Solar Cells," IEEE Electron Device Letters, vol. 33, no. 5, 637-639, 2012.

A. Ebong et al "Capitalizing on the glass etching effect of silver plating chemistry to contact silicon solar cells with homogeneous 100-110 ohm/sq emitters" IEEE Electron Device Letters, vol. 32, no. 6, 779-781, 2011.

A. Ebong et al "Overcoming the technological challenges of contacting homogeneous high sheet resistance emitters (HHSE)" Proceedings 26th European PVSEC, Hamburg-Germany, September 5th-9th 2011.

A. Ebong et al ""Impact of surface cleaning on random texturing of crystalline silicon wafers" Proceedings 26th European PVSEC, Hamburg-Germany, September 5th-9th 2011.

A. Ebong et al ""Implementing narrow front silver gridlines through ink jet machine for high quality contacts to silicon solar cells" Proceedings 37th IEEE

PVSC, Seattle, June 2011.

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>]

Electrical and Computer Engineering

Aba Ebong - EPIC Professor Photovoltaic Research Laboratory (PVRL)

Laboratory space required

4100 ft²

Equipment needed

Wet bench for wafer clean & texturing

Inline Oxidation furnace for passivating oxide growth

Inkjet printer for Ag front contacts

Belt line contact firing for contacts sintering

Plating station for Ni/Cu & Ag LIP

Tube Diffusion & PECVD furnace for p-n junction formation & AR coating

Screen-printer for Ag front contacts

Solar cell simulator for measuring solar cell efficiency

Expected funding per year: \$200K (Estimate) Funding source: Industry, DOE and NSF

<u>Start up funds</u>: \$400K from EPIC Donation through equipment: \$1,050K for equipment received in storage. Equipment donation pending: \$600K

Installation cost: \$400K (Estimate) Annual running cost: \$50K (funds from sponsored projects)

Ian Ferguson (ianf@uncc.edu)

III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>]

Equipment in storage awaiting installation

HINL-038

UNC CHARLOTTE Electrical and Computer Engineerin

Lattice Constant vs Bandgap

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>]

<u>UNC CHARLOTTE</u> Electrical and Computer Engineering

New Approaches to Solid State Lighting: A Diurnal Light Source

Visual Acuity \rightarrow **Psychological** \rightarrow **Physiological**

UNC CHARLOTTE Electrical and Computer Engineering

Ian Ferguson (ianf@uncc.edu)

Optimizing the dual emitter

Sample)	Doping (cm^{-3})	Min β	Max β	$\beta = 1$
A	None	0.89	1.47	$4\frac{A}{cm^2}$
В	1.5×10^{18}	0.08	2.5	$220 \frac{A}{cm^2}$
C	3×10^{18}	0.08	1.1	$305 \frac{A}{cm^2}$

Ian Ferguson (ianf@uncc.edu)

New materials for semiconductor spintronics

Effect of doping on Ga_{1-x}Gd_xN

p-Unactivated

Activated p-doped Ga_{1-x}Gd_xN results in a large magnetic moment

Ian Ferguson (ianf@uncc.edu)

Spin-polarized LED emission

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [‹#›]

Electrical and Computer Engineering

III-Nitrides for Neutron Detection

Reaction	Deposited Energy (MeV)	Range of Proton (µm)	Range of Alpha (µm)	
10B@ 5MeV	2.8	-	13.6	
14N@ 2.65	2.626	36.1	-	

Clear trend in increased collected charge is indicator of (n,p) events

Ian Ferguson (ianf@uncc.edu)

Neutron-Induced Scintillation

Excellent gamma discrimination observed

Ian Ferguson (ianf@uncc.edu)

Future Direction: Multifunctional EMO devices

Devices where the Electrical, Magnetic and Optical (EMO) can interact.

Ian Ferguson (ianf@uncc.edu)

UNC CHARLOTTE

Electrical and Computer Engineering

Ian Ferguson (ianf@uncc.edu)

Historical Development of Lighting and LEDs

Ian Ferguson (ianf@uncc.edu)

Combined Blue LED and YAG:Ce,Pr Spectra=White

Ian Ferguson (ianf@uncc.edu)

Solid State Lighting

- 100 years after the discovery of electroluminescence in a semiconductor, solid state illumination is enabled by advances in high power LED technology during the past 10 years
- Early history of the visible LED
- Development of high-power LEDs at Philips Lumileds
 - Light extraction
 - Packaging
 - Materials technology
- Emerging applications and new figures of merit

Clyde Bridge, Glasgow

Palace in Nancy, France_

Ian Ferguson (ianf@uncc.edu)

Street Lighting

- Ann Arbor
 - Replacing 1,500 streetlights
 - Payback 4 years
 - Using \$100K less energy/yr
- Welland, Ontario

 Retrofitted streetlights
- Tianjin, China
 - 1,500 streetlights
 - Energy savings and economic driver

Ian Ferguson (ianf@uncc.edu)

Lighting in Egypt...

Ian Ferguson (ianf@uncc.edu)

Atomic layer deposition (ALD) is used to provide a transition layer of Al_2O_3 on Si/ZnO substrates before nitride growth by MOCVD.

 Al_2O_3 was grown at 100°C for 5nm and 20nm, then annealed in a furnace at 1100°C followed by AlN/GaN in MOCVD

Ian Ferguson (ianf@uncc.edu)

MOCVD Growth of GaN on Si-Approaches

Develop MOCVD process for GaN on Si Transfer the process to Al₂O₃/Si Determine and compare the characteristics Grow LED device structures and remove substrate

Ian Ferguson (ianf@uncc.edu)

Structural Properties of GaN on Bare Si

• XRD shows good quality GaN (1.5 μm) material on Si

Ian Ferguson (ianf@uncc.edu)

	XRD		PL		AFM
	(002) FWHM (arcsec)	(102) FHWM (arcsec)	FWHM (meV)	BL/YL	RMS roughness (Å)
HT-AlN buffer	549.3	977.5	49.3	5.396	5.67
LT-AlN interlayers	436.8	1041.9	46.9	5.521	3.99

MOCVD process developed for growth of high quality GaN on Si(111)

Ian Ferguson (ianf@uncc.edu)

GaN on ALD/Si Substrate

Bare Si

1.5um GaN on bare Si

The cracking issue has been resolved

Ian Ferguson (ianf@uncc.edu)

Strain and Defect Density

- Al₂O₃ layer reduces strain in GaN layer
- Decrease in tilt angle (α_{tilt})
- Decrease in dislocation density using ALD-Al₂O₃ layer

Ian Ferguson (ianf@uncc.edu)

Process Summary - Comparison

	XRD		PL		AFM
	(002) FWHM (arcsec)	(102) FHWM (arcsec)	FWHM (meV)	BL/YL	RMS roughness (Å)
HT-AlN buffer	549.3	977.5	49.3	5.396	5.67
LT-AIN interlayers	436.8	1041.9	46.9	5.521	3.99
5nm Al ₂ O ₃ /Si	378.6	849.5	46.5	7.395	3.93
10nm Al ₂ O ₃ /Si	433.9	1344.6	47.7	4.497	5.65
20nm Al ₂ O ₃ /Si	416.6	740.1	43.4	28.223	3.70

Increased structural, optical, and surface quality compared to layers on bare Si XRD linewidth approaching typical values for GaN on sapphire

Ian Ferguson (ianf@uncc.edu)

Electrical Properties of GaN LEDs on Si and Sapphire

GaN-based LEDs were grown on ALD- Al₂O₃/Si and sapphire

Device structures consisted 1.0 µm n-GaN, 3periods InGaN/GaN (3 nm/12 nm) MQWs and 150 nm p-GaN

Fabrication was performed to the device sizes of $350\times350\ \mu m^2$

Similar turn-on voltage but higher series resistance for LED on ALD/Si than on sapphire.

Ian Ferguson (ianf@uncc.edu)
Crack-free LEDs on Si

LEDs on GaN/sapphire

Crack-free GaN LEDs on ALD-Al₂O₃/Si substrates

Ian Ferguson (ianf@uncc.edu)

Internal Quantum Efficiency (IQE)

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>]

UNC CHARLOTTE

Electrical and Computer Engineering

Electroluminescence

LEDs on ALD-Al₂O₃/Si substrates shifted to longer wavelengths

Ian Ferguson (ianf@uncc.edu)

L-I curves

Higher efficiency at high drive currents for LEDs on ALD-Al₂O₃/Si Drop in IQE with the shift toward longer wavelengths

Ian Ferguson (ianf@uncc.edu)

Si Substrate Removal Process

Selective wet etching process flow (HNO3:HF:CH3COOH = 3:1:1)

Images of Substrate Removal Process Flow

(a) GaN LEDs mounted on ceramic DIP holder by wire bonding
 (b) LED lit up under forward driving current
 (c) Si substrate selectively removed by wet etching
 (d) Free-standing transparent GaN LED devices seen from back side.

UNC CHARLOTTE Electrical and Computer Engineering

Ian Ferguson (ianf@uncc.edu)

Optical Properties Before and After Wet Etching

No significant change in peak emission wavelength and EL intensity Vs drive current. Wet etching process was effective to protect the devices from being

damaged by acid etchant.

Ian Ferguson (ianf@uncc.edu)

Electrical and Optical Properties

No degradation observed for electrical properties after the substrate removal process.

Efficiency of devices drop at higher drive current due to inefficient heat dissipation

Ian Ferguson (ianf@uncc.edu)

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>] UNC CHARLOTTE Electrical and Computer Engineering

Motivation for PV: Energy demand

World marketed energy consumption, 1970 - 2030. Source: DOE/EIA, Annual Energy Review, 2004.

Ian Ferguson (ianf@uncc.edu)

High efficiency approach

Ian Ferguson (ianf@uncc.edu)

Towards achieving efficiency > 50%

Detailed Balance Calculations for 6000K Black Body Radiation, 500X.

n			Va	lues of I	Band Ga	p			η (%)	0.8 · ŋ (%)
3	0.7	1.37	2						56	44.8
4	0.6	1.11	1.69	2.48					62	49.6
5	0.53	0.95	1.4	1.93	2.68	$\overline{}$			65	52
6	0.47	0.84	1.24	1.66	2.18	2.93	\searrow		67.3	53.84
7	0.47	0.82	1.191	1.56	2	25	3.21	$\overline{\ }$	68.9	55.12
8	0.44	0.78	1.09	1.4	1.74	2.14	2.65	3.35	70.2	56.16

Source: A. De Vos, "Detailed balance limit of the efficiency of tandem solar cells", Journal of Physics D (Applied Physics) 1980, 839-46

5 or more effective pand gaps \rightarrow 50% η

50% $\eta \rightarrow$ **Band** gap > 2.4 *eV*

Ian Ferguson (ianf@uncc.edu)

III-Nitride material system

(ianf@uncc.edu)

UNSW; March 14th 2013 Slide [<#>]

Electrical and Computer Engineering

Very High Efficiency Solar Cells

Ian Ferguson (ianf@uncc.edu)

Research approach

Modeling PC1D, SiLENSe, etc. **Growth** MOCVD, MBE (*Characterization: PL, XRD, Transmission*)

Analysis & Optimization Decrease band gap 2.4 – 2.9 eV InGaN solar cell

Fabrication Current spreading layer, Interdigitated contacts

Characterization I-V, QE

Ian Ferguson (ianf@uncc.edu)

Design principles

FIRST ATTEMPT @ InGaN solar cells

- ➤ III-V solar cell technology
- III-nitride LED, photodetector, laser technology

DESIGN PRINCIPLES

- Maximize light absorption
 - o Thickness, light trapping, ARC, surface texturing, shadowing.
- Maximize collection
 - o Surface passivation, electric fields, band engineering, gettering.
- Minimize dark current
 - o Recombination, passivation, doping.
- Minimize resistive losses
 - o Ohmic contacts, doping, spreading resistance, tunneling.

Ian Ferguson (ianf@uncc.edu)

Preliminary design: p-i-n solar cell

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>]

Electrical and Computer Engineering

Modeling of solar cells: PC1D

Device parameter files

Device design, structure, lifetime and recombination, doping profiles, etc.

Material files

Band structure, recombination <u>Optical:</u> Absorption, refractive index

Ian Ferguson (ianf@uncc.edu)

Modification of PC1D for III-nitrides

Preliminary design: i-region thickness

Band diagram of GaN p-i-n solar cell with 500 nm thick i-region.

Band diagram of GaN p-i-n solar cell with 200 nm thick i-region.

Background n-type concentration: 10¹⁶ cm³.
 Result: i-region thickness limited to 200 nm.

Ian Ferguson (ianf@uncc.edu)

Polarization parameter input in PC1D

File Security Se	🙀 New Parameters - PC1D with Polarization for Windows							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	File Device Excitation Compute Graph View Options Help							
$\begin{bmatrix} P_{\text{Remove Region} \\ P_{\text{Remove Remove Region} \\ P_{\text{Remove Remove Region} \\ P_{\text{Remove Remove Region} \\ P_{\text{Remove Remove Region} \\ P_{Remove Remove Remo$	D Select Region 1 1 5 5 5 5 P 3 7 5 5 P 3 7 5 10 10 10 10 10 10 10 10 10 10 10 10 10							
(3) $\begin{bmatrix} 0 \text{ border essues} \\ \text{Material} \\ \text{Device} \\ \text{Polarization} \\ \text{Polarization} \\ \text{Polarization} \\ \text{Polarization} \\ \text{Material} \\ \text{Device} \\ \text{Polarization} \\ \text{Polarization} \\ \text{Polarization} \\ \text{Polarization} \\ \text{Polarization} \\ \text{Material} \\ \text{Polarization} \\ Pol$	A Remove Region							
Material Doing RegistrationPolarizationPoint Registration(2)A rea 								
$\begin{bmatrix} D_{\text{polarization}} \\ P_{\text{polarization}} \\ P_{\text{polarization}$	Thickness (C)	Polarization						
$\begin{bmatrix} e_{conduction} & (2) \\ A \\ Polarization. & ectance \\ B \\ Surface charge & ectance \\ Contacts & ectance \\ Contacts & ectance \\ B \\ Surface charge & ectance \\ Reflectance \\ B \\ Substrate Polarization & Disabled \\ Size As & $	T Doping	Device						
Polarization(2)A reaectanceA surface chargectanceA surface chargeectanceCortatsectanceB subtrate PolarizationectanceB subtrate PolarizationectanceB subtrate PolarizationectanceB subtrate PolarizationectanceB subtrate PolarizationectanceB subtrate PolarizationectanceB subtrate PolarizationentsD subtrate Polarizationfor program defaultsCarrier mobilities from internal modelDielectric constant 11.9B and gap: 1.124 eVIntrinsic conc. at 300 K: 1×10 ¹⁰ cm ⁻³ Refractive index: 3.58Absorption coeff. from internal modelFree carrier absorption enabledFree carrier absorption enabledP-type background doping: 1×10 ¹⁶ cm ⁻³ No front surface recombinationNo Front-surface recombinatio	A Recombination	Enable Polarization Model						
Area Texturecctance ctanceSurface drage Contactsctance ectanceP treatmellements B substrate Polarizationectance ectanceP treatmellements Substrate Polarizationents DisabledDisabled Save AsDisabledSave As DisabledDisabledSave As DisabledDisabledB detrict constant: 11.9 B and gap: 1.124 eV Intrinsic conc. at 300 K: 1×10 ¹⁰ cm ⁻³ Refrictive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1×10 ¹⁶ cm ⁻³ No front diffusion No Frant-surface recombination No Frant-surface recombination No Frant-surface recombination No Frant-surface recombination No Frant-surface recombinationBBulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Frant-surface recombination No Frant-surface recombinationStrain Relaxation Constant 114.45 um Interface Relaxation FactorNo Frant-surface recombination No Frant-surface recombination No Frant-surface recombinationStrain Relaxation Constant 114.45 um Interface Relaxation FactorNo Frant-surface recombination No Frant-surface recombination	Polarization (2)	E Polarity of region						
1Texture Cantace ContactsCantace ectance ectance1Subscrate charge ectanceectance ectance2Internal Elements Perfectanceents Disabled3Subscrate PolarizationinN(2x) 30GaN(2y) 301New Open Save AsDisabled3Save AsDisabled3Carrier mobilities from internal model Dielectric constant 11.9BBBCarrier absorption coeff. from internal model Free carrier abso	Area	(* In/Ga/Al Face (* N-Face						
$\begin{array}{c} \end{tabular} \\ $	A Surface charge ctance							
$ \begin{array}{c} \label{eq:second} \begin{tabular}{l lllllllllllllllllllllllllllllllllll$	A Contacts	I ✓ Enable Spontaneous Polarization I ✓ Enable Piezoelectric Polarization						
Reflectanc BSubstrate Polarization DisabledAIN($\mathbb{X}(100 \times y)$)New Open Save AsDisabledThickness: 10 µm Material from program defaults Carrier mobilities from internal model Dielectric constant: 11.9 Band gap: 1.124 eV Intrinsic conc. at 300 K: 1 × 10 ¹⁰ cm ⁻³ Refractive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1 × 10 ¹⁶ cm ⁻³ No front diffusion No rear diffusion No rear diffusion No Front-surface recombinationBBulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Front-surface recombinationCExample the recombination No Front-surface recombinationStain Relaxation FactorNo Front-surface recombination No Front-surface recombinationStain Relaxation FactorNo Front-surface recombinationStain Relaxation FactorNo Front-surface recombination No Front-surface recombinationStain Relaxation FactorNo Front-surface recombinationStain S	F Internal Elements	Use III-Nitride Model [In(x) Ga(y) Al(100-x-y)]						
Justice PolarizationPolarizationImage: PolarizationImage: Polarization	B Substrate Polyziastion	InN(%x) GaN(%y) AlN(%(100-x-y))						
New Open Sove AsDisabledThickness: 10 μm Material from program defaults Carrier mobilities from internal model Dielectric constant: 11.9 Band gap: 1.124 eV Intrinsic conc. at 300 K: 1×10^{10} cm ⁻³ Refractive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1×10^{16} cm ⁻³ No front diffusion No rear diffusion No rear diffusion No Front-surface recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Front-surface recombinationNo <td>h</td> <td>70 30 0</td>	h	70 30 0						
Thickness: 10 µm Material from program defaults Carrier mobilities from internal model Dielectric constant: 11.9 Band gap: 1.124 eV Intrinsic conc. at 300 K: 1×10^{10} cm ⁻³ Refractive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1×10^{16} cm ⁻³ No front diffusion No rear diffusion Bulk recombination: $\tau_n = \tau_p = 1000$ µs No Front-surface recombination No Front-surface recombination	S Open Disabled							
Thickness: 10 µm Material from program defaults Carrier mobilities from internal model Dielectric constant: 11.9 Band gap: 1.124 eV Intrinsic conc. at 300 K: 1×10^{10} cm ⁻³ Refractive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1×10^{16} cm ⁻³ No front diffusion No rear diffusion Bulk recombination: $\tau_n = \tau_p = 1000$ µs No Front-surface recombination No Front-surface recombination No Front-surface recombination	Save As							
Material from program defaults Carrier mobilities from internal model Dielectric constant: 11.9BBSpontaneous Polarization: (C/m^2) 0.029 0.029 Band gap: 1.124 eV Intrinsic conc. at 300 K: 1×10^{10} cm ⁻³ Refractive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1×10^{16} cm ⁻³ No front diffusion No rear diffusion Bulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Front-surface recombinationSpontaneous Polarization: (C/m^2) 0.029 Piczoelectric Constants (C/m^2) 0	Thickness: 10 µm	C External Polarization Model						
Carrier mobilities from internal model Dielectric constant: 11.9 Band gap: 1.124 eV Intrinsic conc. at 300 K: 1×10^{10} cm ⁻³ Refractive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1×10^{16} cm ⁻³ No front diffusion No rear diffusion Bulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Front-surface recombination No Front-surface recombination	Material from program defaults	Spontaneous Polarization (C/m ² 2) 0 000						
Dielectric constant: 11.9 Band gap: 1.124 eV Intrinsic conc. at 300 K: 1×10^{10} cm ⁻³ Refractive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1×10^{16} cm ⁻³ No front diffusion No rear diffusion Bulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Front-surface recombination No Front-surface recombination	Carrier mobilities from internal model	B						
Band gap: 1.124 eV Intrinsic conc. at 300 K: $1 \times 10^{10} \text{ cm}^3$ Refractive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: $1 \times 10^{16} \text{ cm}^3$ No front diffusion No rear diffusion Bulk recombination: $\tau_n = \tau_p = 1000 \mu\text{s}$ No Front-surface recombination No Poor surface recombination	Dielectric constant: 11.9	Piezoelectric Constants (C/m ²) e31 -0.33 e33 0.65						
Intrinsic conc. at 300 K: 1×10^{10} cm ⁻³ Refractive index: 3.58 Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1×10^{16} cm ⁻³ No front diffusion No rear diffusion Bulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Front-surface recombination No Poon surface recombination	Band gap: 1.124 eV	Elastic Constants (GPa) c13 105 c33 395						
Refractive index: 3.58State Constant Of Constant (Section 1997)Absorption coeff. from internal modelFree carrier absorption enabledP-type background doping: 1×10^{16} cm ⁻³ No front diffusionNo front diffusionNo rear diffusionBulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Front-surface recombinationNo Pornet surface recombination	Intrinsic conc. at 300 K: 1×10^{10} cm ⁻³	Lattine Constant of Durrent Region (Å) a To yoo						
Absorption coeff. from internal model Free carrier absorption enabled P-type background doping: 1×10^{16} cm ⁻³ No front diffusion No rear diffusion Bulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Front-surface recombination No Beam surface recombination	Refractive index: 3.58	Lattice constant of current hegion (A) a [3,189 c [3,186						
Free carrier absorption enabled Strain Relaxation Constants (used for piezoelectric polarization) P-type background doping: 1×10^{16} cm ⁻³ Lattice Constant of underlying region a 3.112 (Å) No front diffusion Bulk Relaxation Constant 14.45 um No Front-surface recombination Interface Relaxation Factor 95 (%)	Absorption coeff. from internal model	Chair Delevation Constant (see 10 street, attack in the						
P-type background doping: 1×10^{16} cm ⁻³ Lattice Constant of underlying region a 3.112 (Å) No front diffusion Bulk Relaxation Constant 14.45 um No Front-surface recombination Interface Relaxation Factor 95 (%)	Free carrier absorption enabled	Strain Helaxation Constants (used for piezoelectric polarization)						
No front diffusion Bulk Relaxation Constant 14.45 um No rear diffusion $\tau_n = \tau_p = 1000 \ \mu s$ Interface Relaxation Factor 95 (%) No Front-surface recombination No Poor runnation 95 (%)	P-type background doping: 1×10 ¹⁶ cm ⁻³	Lattice Constant of underlying region a 3.112 (Å)						
No rear diffusion 14.45 Bulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ No Front-surface recombination 95 No Population matrix 95	No front diffusion	Bulk Belavation Constant						
Bulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$ Interface Relaxation Factor 95 (%) No Front-surface recombination No Beam murface meanwhination (%)	No rear diffusion							
No Pront-surjace recombination	Bulk recombination: $\tau_n = \tau_p = 1000 \ \mu s$	Interface Relaxation Factor 95 (%)						
	No Front-surjace recombination							
INO Real-Survive Defonitorination	No Rear-survace recombination	OK Cancel						
	Polarization Moael Disablea (1)							
Specify the polarization model	Specify the polarization model	100 elements						

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>]

UNC CHARLOTTE

Electrical and Computer Engineering

Test runs for polarization model

1. Spontaneous polarization in p-i-n GaN/InGaN structure

Without polarization.

With spontaneous polarization.

2. Piezoelectric polarization in p-GaN window layer

p-GaN window layer.

Ian Ferguson (ianf@uncc.edu)

Sample polarization results: Spontaneous polarization

Test 1: p-GaN/u-InGaN interface of a p-i-n GaN/InGaN solar cell.

Without spontaneous polarization.

With spontaneous polarization.

- **Result:** Spontaneous polarization marginally enhances electric field.
- ▶ Reason: Marginal difference in P_{SP} between GaN and $In_{0.2}Ga_{0.8}N$.

Ian Ferguson (ianf@uncc.edu)

Sample polarization results: Piezoelectric polarization

- Test 2: Strained p-GaN window layer on p-InGaN junction.
- Conventional choice for window layer for InGaN.

Completely relaxed window layer. (Without piezoelectric polarization.)

Completely strained window layer. (With piezoelectric polarization.)

UNC CHARLOFTE

Electrical and Computer Engineering

Result: Strong detrimental band bending at GaN/InGaN interface.

Ian Ferguson (ianf@uncc.edu)

InGaN material characterization

Summary of XRD & PL measurements of InGaN with variable [In] grown by MOCVD.

Crystalline quality degrades for [In] > 30%

> In segregation observed

Ian Ferguson (ianf@uncc.edu)

InGaN material characterization - Photoluminescence

PL emission Vs. [In] from XRD

- InGaN growth consistent with literature
- Observation of secondary phase PL emission

• \rightarrow Phase separation

Secondary phase emission intensity increases as [In] increases

Ian Ferguson (ianf@uncc.edu)

Control of phase separation in MOCVD samples

PL of InGaN grown at variable TMIn flow rate.

XRD of InGaN grown at variable TEGa flow rates.

- **Result:** Phase separation is controlled in MOCVD by:
 - Increasing TMIn flow rate \rightarrow Growth rate
 - Moderating TEGa flow rate
 - Limiting thickness of epitaxy.

Ian Ferguson (ianf@uncc.edu)

InGaN optical absorption: Implications

> High Absorption Coefficient: > 10^5 cm⁻¹ at band edge.

- Absorption is ~ 10X greater than GaAs.
 - Device thickness ~ 500nm.
 - Complements low diffusion lengths.

Ian Ferguson (ianf@uncc.edu)

Lessons Learned – Flexibility in Optical Absorption

Device thickness can be tuned for optimal system performance

Blue is full spectrum on High E chip. Magenta is Spectrum expected to be passed by 25% In InGaN (2.5 eV)

Ian Ferguson (ianf@uncc.edu)

P-type doping in InGaN

> Optimize:

- 1. Material quality,
- 2. Mg flow rate,
- 3. Anneal conditions.

Material result:

•
$$[In] = 15\% \rightarrow 10^{19} \text{ cm}^{-3}$$

•
$$[In] = 28\% \rightarrow 10^{18} \text{ cm}^{-3}$$

High p-type doping also demonstrated in solar cell:

p-type Ohmic contact	
♪ →p-InGaN current spreading layer	
p-InGaN; 110nm; [In] ~ 28%	
	n-type Ohmic contact ♠
u-GaN; 2um;	
(unintentionally doped n-type ~ 10 ¹⁶ cm ⁻¹	³)
Sapphire Substrate	

Test device for p-type In_{0.28}Ga_{0.72}N.

I-V curve for In_{0.28}Ga_{0.72}N test device.

> **Device result:** Successful 2.1 V_{OC} for 2.5 eV device.

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>] UNC CHARLOTTE Electrical and Computer Engineering

Test Validation Procedure

Ian Ferguson (ianf@uncc.edu)

Baseline solar cell fabrication

(ianf@uncc.edu)

Electrical and Computer Engineering

UNSW; March 14th 2013 Slide [#>]

InGaN test solar cell fabrication

Fabricated solar cell with p-cap.

• NiO_x is used for Ohmic contact to p-GaN cap layer.

	p-contact pad Ni / Au Top current spreading layer (ITO)	
Π	n-GaN capping layer; 10nm	
	p-InGaN; 100nm	n-contact
	n-InGaN; 200nm	pad Ti/Al/Ti/Au
	GaN template + sapphire substrate	

Fabricated solar cell with n-cap.

- ITO is used for Ohmic contact to n-GaN cap layer.
- Additional contacting schemes for n-GaN cap layer are investigated...

Ian Ferguson (ianf@uncc.edu)

Contacting schemes for n-GaN cap layer

Grid contact.

UNC CHARLOTTE Electrical and Computer Engineering

Fabricated device structures

Current-spreading contact

Ian Ferguson (ianf@uncc.edu)

I-V characteristics: Best devices

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>]

UNC CHARLOTTE Electrical and Computer Engineering
Test I-V setup

Fabricated InGaN solar cells under test.

I-V setup and test InGaN solar cell indicating a V_{OC} of 1.86V under 1 Sun.

Ian Ferguson (ianf@uncc.edu)

UNC CHARLOTTE Electrical and Computer Engineerin

Thermoelectric (TE) Effect

- Temperature difference induces a voltage difference, the Seebeck voltage
- $S = -\Delta V / \Delta T$
- Seebeck coefficient S < 0 for n-type materials
- S > 0 for p-type materials

 $ZT = (S^{2}\sigma/\kappa)T = "Thermoelectric Figure of Merit"$ S = Seebeck coefficient $\sigma = Electrical conductivity$ $\kappa = Thermal conductivity = \kappa_{e} + \kappa_{ph}$ T = Delta Temperature

TE Equations: A Function of Carrier Concentration

The Electrical Conductivity

 $1/\rho = \sigma = ne\mu$

The Thermal Conductivity

The Seebeck Coefficient

$$\alpha = \frac{8\pi^2 k_{\rm B}^2}{3eh^2} \, m^* \, T \left(\frac{\pi}{3n}\right)^{2/3}$$

Electrical conductivity = σ Carrier concentration = n Electron charge = e Mobility = μ

$$\kappa_{\rm e} = L\sigma T = ne\mu LT$$

 $K = K_e + K_I$

 $\kappa = \text{thermal}$ conductivity $\kappa_e = \text{electronic thermal}$ conductivity $\kappa_l = \text{lattice thermal}$ conductivity L = Lorenz factor =2.4 x 10⁻⁸ J²K⁻²C⁻²

α = Seebeck coefficient
k_B = Boltzmann constant
h = Planck's constant
m* = effective electron mass
T = operating temperature

ZT =(S²σ/κ)T = "Thermoelectric Figure of Merit" S²σ = "Power Factor"

J.G. Snyder and E. Toberer Nat. Mat. 7, 105 (2008)

Ian Ferguson (ianf@uncc.edu)

State-of-the-Art Thermoelectric Materials

Ian Ferguson (ianf@uncc.edu)

GaN: Thermal properties

- Seebeck Coefficient is relatively constant up to 1000K
- Thermal Conductivity is decreased with T and doping concentration
- Piezoelectric acoustic phonons main contributor of thermal conductivity is at 3 orders of magnitude more than the electrical contribution in thermal conductivity

Temperature dependence of electrical resistivity (left ordinate) and Seebeck coefficient (right ordinate) of fr-GaN of experimental values (clo circles) and calculation values (crosses).

Ian Ferguson (ianf@uncc.edu) III-Nitrides - The Universal Solution UNSW; March 14th 2013 Slide [<#>]

Electrical and Computer Engineering

TE Properties of III-Nitrides

• ZT of InGaN is at 3 times highers than AlGaN ZT of InGaN could reach at 0.15 at 1000K with 60% Indium concentration

Tong et al., Proc. SPIE, vol. 7211, pg. 721103, 2009

Ian Ferguson (ianf@uncc.edu)

GaN TE Generator

Crude TE generators made from free-standing GaN (HVPE)

Yamaguchi et al., APL, vol. 86, pg. 252102, 2005 Kaiwa et al., TSF, vol. 515, pg. 4501, 2007

Summary of GaN Data

(ianf@uncc.edu)

UNSW; March 14th 2013 Slide [<#>]

Thermal Conductivity vs. Carrier Concentration

- Theoretical and experimental results follow the same trend
- Values of thermal conductivity were calculated by using first order exponential fit of experimental data. The equation used is $k = 1.24 \exp(-n/1.87 \times 10^{18}) + .533$

D.I. Florescu *et al.* J. Appl. Phys. 88, 3295 (2000) J. Zuo *et al.* J. Appl. Phys. 92, 2534 (2002)

Ian Ferguson (ianf@uncc.edu)

Seebeck Coefficient vs. Carrier Concentration

- Seebeck coefficient decreases with the increase of carrier concentration
- P-type doped GaN has higher Seebeck coefficient compared to N-type doped ones
- Seebeck coefficients for GaN:Si follow the trend reported in literature

A. Sztein *et al.* J. Appl. Phys., 110, 123709 (2011) S. Yamagushi *et al.* Appl. Phys. Lett., 86, 252102 (2005) W. Liu *et al.* J. Appl. Phys. 97, 123705 (2005)

Ian Ferguson (ianf@uncc.edu)

Figure of Merit ZT vs. Carrier Concentration

- Our ZT values for GaN:Si are higher than reported in literature
- Higher Seebeck coefficient does not compensate for very low electrical conductivity of GaN:Mg

D.I. Florescu *et al.* J. Appl. Phys. 88, 3295 (2000) W. Liu *et al.* J. Appl. Phys. 97, 123705 (2005)

Ian Ferguson (ianf@uncc.edu)

Comparison of GaN and ZnO results

Ian Ferguson (ianf@uncc.edu)

 $\overline{\mathbf{F}}$

Material	μ (cm ² /Vs)	n or p (cm ⁻³)	$\sigma (1/(\Omega cm))$	XRD peak (°)	XRD	S (μV/K)	Power Factor
					FWHM		(x10 ⁻⁴ W/m-K)
					(arcsec)		
$In_{0.07}Ga_{0.93}N$	15.55	1.53E+18	3.821	17.0876	233.64	4050	62.67
$In_{0.08}Ga_{0.92}N:Mg$	1.22	1.41E+18	0.2747	16.9697	240.84	1200	0.40
$In_{0.1}Ga_{0.9}N$	597.20	1.24E+18	118.8	16.8882	297.47	-960	109.49
$In_{0.16}Ga_{0.84}N$	110.40	1.82E+18	32.12	16.7296	467.17	-661	14.03
In _{0 175} Ga _{0 835} N	48.82	6.142E+17	4.80	16.7550	648.00	-209	1.57
$In_{0.21}Ga_{0.79}N$	200.90	2.063E+18	66.39	16.5050	536.40	-239	3.79

Correlation between crystal quality and Seebeck coefficient

Seebeck Coefficient vs. Indium Content

- Seebeck coefficient decreases with the increase in indium content
- Our Seebeck coefficients have higher values reported in literature

N. Pantha, et al. Appl. Phys. Lett. 92, 042112 (2008)

A. Sztein, et al. J. Appl. Phys. 110, 123709 (2011)

Ian Ferguson (ianf@uncc.edu)

XRD patterns with different Indium concentration

InGaN shows phase separation with increasing indium content even when attempts are made to minimize it

Ian Ferguson (ianf@uncc.edu)

Phase separation in InGaN

UNC CHARLOTTE Electrical and Computer Engineering

Ian Ferguson (ianf@uncc.edu)

Crystal quality at different indium composition

UNC CHARLOTTE Electrical and Computer Engineering

Ian Ferguson (ianf@uncc.edu)

Figure of Merit ZT vs. Indium Content

• ZT values are decreasing with the increase in indium content

N. Pantha et al. Appl. Phys. Lett. 92, 042112 (2008)

A. Sztein et al. J. Appl. Phys. 110, 123709 (2011)

Ian Ferguson (ianf@uncc.edu)

Electrical and Computer Engineering <u>Wide Band Gap III-Nitride</u> <u>Compound Semiconductor Devices:</u> <u>The Universal Solution for Energy Applications</u>

Ian Ferguson

University of North Carolina at Charlotte Department of Electrical and Computer Engineering Charlotte, NC 28223 Email: <u>ianf@uncc.edu</u>

Ω

Ian Ferguson (ianf@uncc.edu)