

CZTSSe thin-films and solar cells: effects of Cu-Zn order-disorder transition

Germain Rey

Now at <u>UNSW</u> Formerly at <u>University of Luxembourg</u>

SPREE Seminar, Sydney, 22th November 2018

g.rey@unsw.edu.au

- $CZTS : Cu_2ZnSnS_4$ - Eg = 1.5 eV
- CZTSe : $Cu_2ZnSnSe_4$ - Eg = 1.0 eV
- CZTSSe : $Cu_2ZnSn(S,Se)_4$ - Eg = 1.0-1.5 eV

[1] N. Terada *et al.* <u>Thin Solid Films</u> **582** (2015) 166

- Large absorption coefficient for hv > Eg
- Non-toxic and abundant metals

• Cell structure

• Efficiency

371 (2013) 20110432

• Voc and Band-tails

- Structural observation of disorder in Cu/Zn planes:
 - Neutron diffraction [1], NMR [2], anomalous XRD [3]
- Theoretical prediction:
 - Low formation energy of $[Cu_{Zn}+Zn_{Cu}]$ [4]

[1] S. Schorr <u>SEM&SC</u> **95** (2011) 1482

[2] L. Choubrac *et al.* <u>PCCP</u> **15** (2013) 10722 [

[3] A. Lafond *et al.* <u>Acta Cryst. B</u> 70 (2014) 390
[4] S. Chen *et al.* Adv. Mater. 25 (2013) 1522

- Cu-Zn Disorder:
 - Increase in unit cell volume
 - Rise Valence band

[2] S. Chen et al. Adv. Mater. 25 (2013) 1522

CZTSe Band gap and Cu-Zn (dis)order

G. Rey et al. Applied Physics Letters, 105 (2014) 112106

UNIVERSITÉ DU

Theoretical description: Vineyard's model[1]

- Long range order parameter: $S = \frac{P_{Cu}^{Cu} F_{Cu}}{1 F_{Cu}}$
 - Perfect order S=1
 - Complete disorder S=0
- Theoretical description: Vineyard's model [1]
 - Motion equation for direct exchange:

$$\frac{dS}{dt} = \frac{1}{2} [K_0 (1-S)^2 - K_D (1+S)^2]$$

with $K_{0/D} = 4f \exp\left(\frac{-U}{k_D T}\right) \exp\left(\frac{\pm 3VS}{k_D T}\right)$

G. Rey et al. Applied Physics Letters, 105 (2014) 112106

CZTSe Band gap and Cu-Zn (dis)order

• Comparison band gap and order parameter

Critical temperature = 200° C for CZTSe Eg can be used as an order parameter

G. Rey et al. Applied Physics Letters, 105 (2014) 112106

Cu-Zn (dis)order probed by Raman

G. Rey et al. Applied Physics Letters, 105 (2014) 112106

UNIVERSITÉ DU

Cu-Zn (dis)order probed by Raman

• Evolution of Raman spectrum during ordering at 100°C

Reversibility and continuity => order-disorder transition

CZTSe thin film and Cu-Zn (dis)order

- Ordering increases the band gap by $\sim 10\%$
- Tc for the order-disorder transition in CTZSe 200°C
- The band gap can be used as a secondary order parameter
- Raman spectrum reflects the changes induced by the orderdisorder transition :
 - symmetry
 - coherence length

- Sample preparation:
 - Coevaporation at 470°C

• ORD DIS post-treatment

Ex-situ

• ORD and DIS postdeposition treatment

• ORD and DIS postdeposition treatment

• Voc deficit

Constant Voc deficit with order: \uparrow Order \uparrow Eg \uparrow Voc : \uparrow Voc/Eg

G. Rey et al. Sol. Ener. Mat. & Sol. Cells, 151 (2016) 131

Ex-situ Ord or Dis -> no or limited effect on Jsc (change in doping) In-situ Ord -> \uparrow Jsc (7 mA/cm2) due to \uparrow collection at long λ

G. Rey et al. Sol. Ener. Mat. & Sol. Cells, 151 (2016) 131

- Carrier collection length is increased by the ordering treatment
- Ordering increases the band gap and Voc
- Ordering does not affect Voc deficit

Nature of kesterite tails

• Fluctuating electrostatic potential

• Fluctuating band-gap energy

Electrostatic potential fluctuation can be screened

[1] B. Shklovskij & A. Efros, Electronic Properties of Doped Semiconductors (1984) Springer-V.

UNIVERSITÉ DU

Nature of kesterite tails

• Temperature and excitation dependent PL of CZTSSe (~9% eff.)

Strong blue shift w. excitation & red shift w. temperature => fluctuating band-edges

G. Rey et al. Solar Energy Material and Solar Cells 179 (2018) 142

Nature of kesterite tails

• Behaviour of fluctuation depth with excitation

Limited decrease in $\gamma =>$ Band-gap fluctuation is the main mechanism of band-tail formation:

2/3 Band-gap fluctuations + 1/3 Electrostatic fluctuations

G. Rey et al. Solar Energy Material and Solar Cells 179 (2018) 142

UNIVERSITÉ DU

• Measurement of tail absorption using PL [1] +TMM [2]

[1] E. Daub & P. Würfel <u>Phys. Rev. Lett.</u> **74** (1995) 1020
[2] G. Rey *et al.* <u>Phys. Rev. Appl.</u> **9** (2018) 064008

• CZTSSe Absorption vs Cu-Zn (dis)order

Cu-Zn (dis)order parameter: Eg Band-tail parameters: Eu and σ G. Rey *et al.* Solar Energy Material and Solar Cells **179** (2018) 142

Cu/Zn ordering by thermal postdeposition treatment does not reduce Eu and σ

=> No reduction of the PL red-shift vs. Eg [1]

=> No improvement of Voc deficit [1][2]

[1] G. Rey *et al.* Solar Energy Material and Solar Cells **151** (2016) 131 - 138
[2] S. Bourdais *et al.* Advanced Energy Materials **6** (2016)

• Avoiding disorder by alloying, example from literature:

(Cu,Ag)ZnSnSe₄

[1] C. Yan *et al.* Energy Letter 2 (2017) 930
[2] T. Gershon *et al.* Advanced Energy Materials 6 (2016)

• Potential candidate:

[2Cu_{Zn} + Sn_{Zn}] would be a good candidate to explain the large bandtailing in kesterite

[1] S. Chen et al. Advanced Materials 25 (2013) 1522-1539

27

- Nature of the kesterite band-tail:
 - 2/3 band-gap fluctuations
 - 1/3 electrostatic fluctuations
- Cu-Zn ordering by post-deposition annealing has no effect on Eu or σ .
- $[Cu_{Zn}+Zn_{Cu}]$ is not the direct main cause of band-tailing, instead we propose $[2Cu_{Zn}+Sn_{Zn}]$ as potential candidate.

Thank you for your attention

- Acknowledgments:
 - Susanne Siebentritt and Laboratory for PV team
 - G. Dennler, G. Larramona & S. Bourdais
 - M. Guennou

• Funding:

Laboratory for Photovoltaics

Disorder and Band-Tail

Absorption spectrum of kesterite:

Disorder and Band-Tail

Band gap and (dis)order

• Composition EDX 20kV

No significant change in composition after annealing

• Voc and Band-tail

[1] S. De Wolf et al. J. Phys. Chem. Lett., 5 (2014) 1035

Band-tailing & Cu-Zn (dis)order

• CZTSSe & CZTSe Band-tail vs Cu-Zn (dis)order

Band-tailing & Cu-Zn (dis)order

• CZTSSe & CZTSe Band-tail vs Cu-Zn (dis)order

Cu-Zn (dis)order is not the main cause of potential fluctuation

35

[1] J. J. S. Scragg *et al.* <u>Physica Status Solidi (b)</u> 253 (2015) 247–254
[2] P. Zawadzki *et al.* <u>Physical Review Applied</u> 3 (2015) 034007

K value

Shift

PDS

Acknowledgment: R. Carius and M. Nuys from Forschungszentrum Jülich GmbH Institut für Energie und Klimaforschung, 52425 Jülich, Germany.

Disorder and Band-Tail

• Cu-Zn disorder and tail in kesterite:

Material	Sample	Post synthesis thermal treatment	Ea	Eu	σ
			(eV)	(<u>meV</u>)	(<u>meV</u>)
<u>CZTSSe</u>	#1-D	1 h at 300°C + quench to RT	1.162	29	76
<u>CZTSSe</u>	#1-Std	none	1.204	30	74
CZTSSe	#1-O	1h at 180°C + 180→80°C in 10 h	1.264	32	77
<u>CZTSSe</u>	#2-D	1 h at 300°C + quench to RT	1.148	30	77
<u>CZTSSe</u>	#2-Std	none	1.255	30	87
CZTSSe	#2-O	1h at 180°C + 180→80°C in 10 h	1.301	31	85
<u>CZTSSe</u>	#3-D	1 h at 300°C + quench to RT	1.109	28	68
CZTSSe	#3-O	3 h at 170°C + 170→100°C in 3 d + 28 d at 100°C	1.238	29	70
CZTSe	#1-D	1 h at 250°C + quench to RT	0.916	26	49
CZTSe	#1-O+D	3 d at 100°C + 1 h at 250°C + quench to RT	0.913	26	49
CZTSe	#1-Std	none	0.931	25	49
CZTSe	#1-O	3 d at 100°C	0.959	27	49
CZTSe	#1-D+O	1 h at 250°C + quench to RT + 3 d at 100°C	0.959	25	49
CZTSe	#2-D	1 h at 300°C + quench to RT	0.894	28	56
CZTSe	#2-0	3 h at 170°C + 170→100°C in 3 d + 28 d at 100°C	0.952	29	59

No change of tail parameters with

Cu-Zn disorder

Theoretical description

• Vineyard model

$$exchange \ rate = f \ exp[-(U + (k - j)V)/kT]$$

Voc deficit

$$V_{oc} = \frac{E_a}{q} + \frac{AkT}{q} \ln\left(\frac{-J_{sc}\eta}{J_{00}}\right) \qquad [1]$$

Sampla	PL_m	E_a^{mrp}	
Sample	meV	meV	
AG	836	822	
AG+ <i>ex</i> -DIS+ <i>ex</i> -ORD	866	843	
AG+ <i>ex</i> -DIS	817	810	
AG+ex-ORD+ex-DIS	816	771	
in-ORD	865	860	
in-ORD+ex-ORD	898	870	
in-ORD+ ex -DIS+ ex -ORD	867	855	
in-ORD+ ex -DIS	817	807	
<i>in</i> -ORD+ <i>ex</i> -ORD+ <i>ex</i> -DIS	821	766	

Ea matches PLmax except for ORD+DIS Recombination occur mainly in the bulk

[1] R. Scheer & H.-W. Schock, Chalcogenide Photovoltaics Wiley-VCH

Admittance spectroscopy and CV

↑order ↓p Order changes the carrier freeze out

(Dis)order effect on device

• Voc: the kesterite chalenge

Gokmen et al. Appl. Phys. Lett. 103, 103506 (2013)

Introduction and review

- Structural observation of disorder in Cu/Zn planes:
 - By neutron diffraction CZTS(e) [1]
 - By NMR CZTS [2]
 - By x-ray resonant diffraction CZTS [3]

Introduction and review

- No Cu(2a)/Zn(2d) exchange :
 - Position 2*a* occupied by Cu only (ND) CZTS(e) [1]
 - No Zn on 2a (NMR) CZTS [2]
- No disorder in the Cu/Sn planes:
 - Position 2*a* occupied by Cu only (ND) CZTS(e) [1]
 - Plane randomisation energy (*ab initio*) CZTS[3]:
 - Cu/Sn plane = 78 meV/at
 - $Cu/Zn \ plane = 9 \ meV/at$

[1] S. Schorr <u>SEM&SC</u> 95 (2011) 1482
[2] L. Choubrac *et al.* PCCP 15 (2013) 10722

[3] S. Chen *et al.* <u>APL</u> **94** (2009) 041903

Theoretical description

• Motion equation for direct exchange

$$\frac{dS}{dt} = \frac{1}{2} \left[K_O (1-S)^2 - K_D (1+S)^2 \right] \qquad \begin{array}{l} K_O \\ K_D \end{array} = 4f \exp\left(\frac{-U}{k_B T}\right) \exp\left(\frac{\pm 3vS}{k_B T}\right) \end{array}$$

Band gap and (dis)order

- Sample preparation:
 - Coevaporation at 490°C

Band gap and (dis)order

- Annealing:
 - Two zones tubular oven
 - Vacuum (2.10⁻³ mbar)
- Quenching:
 - Transfert to cold zone
 - N₂ gaz flow

• Band gap measurement by spectrophotometry:

Non coherent free standing film

$$\alpha = \frac{1}{d} ln \left(\frac{R_s - \chi}{\chi T_s} \right) \qquad \chi = \frac{(T_s^2 + 2) - (\mathcal{R}_s - 1)^2}{2(2 - \mathcal{R}_s)} - \sqrt{\left\{ \frac{(T_s^2 + 2) - (\mathcal{R}_s - 1)^2}{2(2 - \mathcal{R}_s)} \right\}^2 - \frac{\mathcal{R}_s}{2 - \mathcal{R}_s}}$$

Band-tailing & Cu-Zn (dis)order

Cu-Zn (dis)order could be a potential source of band-gap fluctuations

[1] G. Rey *et al.* <u>Applied Physics Letters</u> **105** (2014) 112106
[2] D. Többens *et al.* <u>Physica Status Solidi (b)</u> **253** (2016) 1890-1897

(dis)order effect on device

• EQE and PL for CZTSe on Mo/SLG

Decrease in band gap with decrease in order

UNIVERSITÉ DU

Blue-shift w. excitation, red-shift w. temperature (low T) Heavily doped & heavily compensated SC

-Yu, P. W. Excitation dependent emission in Mg , Be , Cd , and Zn implanted GaAs Journal of Applied Physics, **1977**, *48*, 5043-5051

• Peak position evolution w. excitation:

-Gokmen, T.; Gunawan, O.; Todorov, T. K. & Mitzi, D. B. Band tailing and efficiency limitation in kesterite solar cells *Applied Physics Letters*, **2013**, *103*, 103506

• Peak position evolution w. temperature (low T):

Effect of non-radiative recombination \uparrow with T

• Radiative transition vs. temperature:

Temperature	А	В	k_1	k ₂
(K)				
6	14.9	1.1x10 ⁻²	0.5	0.5
50	14.7	7.1x10 ⁻³	0.5	0.5
100	13.1	1.2x10 ⁻²	0.75	0.75
150	10.9	2.9x10 ⁻⁵	1	0.5
200	9.6	2.1x10 ⁻³	0.5	1
300	9.2	0	0	1.30

-Spindler, C.; Regesch, D. & Siebentritt, S. Revisiting radiative deep-level transitions in CuGaSe2 by photoluminescence *Applied Physics Letters*, **2016**, *109*, 032105

• Radiative transition vs. temperature:

-Levcenko, S.; Just, J.; Redinger, A.; Larramona, G.; Bourdais, S.; Dennler, G.; Jacob, A. & Unold, T. Deep Defects in Cu\$_2\$Sn(S, Se)\$_4\$ Solar Cells with Varying Se Content *Phys. Rev. Applied*, **2016**, *5*, 024004

• Nature of the fluctuation:

Laboratory for Photovoltaics

g.rey@unsw.edu.au