

Semitransparent Organic Solar Cells

Tam Hoi Lam, Wu Zhenghui and Furong Zhu Department of Physics and Institute of Advanced Materials Hong Kong Baptist University

UNSW, 30 Aug, 2012

Outline

- A glimpse of photovoltaic technologies
- ITO-based transparent cathode
- Optical enhancement in semitransparent organic solar cells
- Applications of semitransparent OSCs
- Summary

Photovoltaic technologies c-Si, poly c-Si **Bulk** III-V semiconductor (GaAs, InP) Thin film c-Si, a-Si, hybrid Si II-VI semiconductor film (CdTe) CuInSe₂, Cu(InGa)Se₂ Thin Film Solar cells Solid dye-sensitized solar cells Organic Organic/inorganic hybrid Organic (polymer & small molecule) Nano-Nano-particle, nano-wire & quantum dotbased solar cells structured

Si & thin film solar cells

Other PV technologies

Туре	Benefit or intended benefit (all are light weight compared to silicon)	Efficiency at which it is viable	Challenges
CIGS	High efficiency at low cost, long life, transparent , no disposal problems	10-15% i.e. now	Price of indium
CdTe	Fairly high efficiency (below CIGS, above others). Well	10-15% i.e. now for buildings	Cd is a poison, controlled disposal only, so not allowed in consumer goods etc, tough to print, supply of Te?
DSSC	Tolerant of polarized light, low level light, transparent, extreme angle of incoming light, choice of colors, no disposal problems	10-15% i.e. now	Liquids Price of ruthenium?
OSC	Low cost, huge materials varieties, tunable electronic/optical properties	8-10%	Cost, efficiency, stability, narrow spectrum

Limitations in OSCs

- It limits the absorption and thus short circuit current density
- Low carrier mobility (~10⁻⁶ to 10⁻³ cm²/Vs)
 - Active layer cannot be too thick <300nm
 - Fill factor affected due to the large series resistance

Limitations in OSCs

Inefficient utilization of the solar energy by current available materials.

Possible approaches:

- Low band gap photoactive materials
- Tandem cells
- Light in-coupling features , light harvesting

Advantages of OSCs

- Solution processable, lightweight, translucent & flexible, potential low cost
- Roll to roll coating technologies could realize scalable production process with high productivity
- Less energy consumption during fabrication process, less CO₂ emission.

Power generation windows

Architectural surfaces

Flexible, transparent & decorative

Motivation and challenges

- Perceived benefits of OSC technologies
 - Lower cost, higher volumes, greater flexibility, light weight, size and shape
 - New device concepts, inverted, translucent
 - The best research OSC efficiency approaching 10%
- Technical challenges
 - New semiconducting and conducting materials with tunable electronic and optical properties
 - Efficient charge collection properties at organic/electrode interface
 - light harvesting, solution processing stability, thin film encapsulation...

Conversion steps

Light absorption

Exciton generation

Exciton diffusion

Charge separation

Charge transport

- Reflection, Transmission
- Spectral mismatch
- Exciton recombination
- Excition transfer with recombinations
- No charge separation and subsequent recombinations of excitons
- Recombination of charges
- Limited mobility of charges
- Recombination near electrodes
- Energy barrier at electrodes

Separated charges at electrodes

Optical constants

Interlayer:

- 1) Thin metal layer
 - Discontinuous and high reflectivity in NIR.
- 2) Oxide/organic interlayer
 - Limited lateral conductivity
- 3) TCO electrode is suited for application in
 - Organic, inorganic and hybrid solar cells
 - Simple, effective and low cost technology
 - Greater fabrication flexibility

High performance TCO (ITO)

- Low resistance, high transparency with smooth surface
- Compatibility of device fabrication with no damage to the underlying functional organic layers
- Excellent delineation and adhesion capabilities
- Size, shape and substrate flexibility
- Lower cost and higher volumes
- Emerging new applications:

Flexible electronics including FOLED displays, lighting,

OSC, organic sensors ...

Low processing temperature ITO

Low processing temperature ITO

- Deposition at a temp < 60°C
- TCO (ITO, AZO, IZO)/PC & PET etc.
- T(λ) over 85%
- Rs[~] 25 Ω /sq, ~130nm, for ITO
- Smooth surface, rms < 1.0 nm
- Low stress
- High etching rate
- No damage to the underlying organic/polymer materials
- Applications: top-emitting OLEDs, FOLED, tandem & semitransparent OSCs, integrated org electronic devices ...

- An increased V_{oc} , photocurrent matching required
- Thinner active layer for better charge transport
- Extensive spectral response

3

2

טט

0.2

0.6

0.4

Voltage (V)

0.8

1.0

Integrated absorptance

- Maximum absorption for P3HT:PCBM based OSCs occurs at 75nm, 200nm and 250nm.
- Oscillation absorption behavior \rightarrow interference effect.

Integrated light absorptance (%)

Optical intensity, |E|²

Semitransparent OSCs

- two competing performance indexes: $T(\lambda) \& A(\lambda)$

- ITO acts as refractive index matching layer to enhance the $T(\lambda)$
- ITO improves the lateral conductivity of the top cathode

Appl. Phys. Lett. 90 (2007) 103505.

Semitransparent OSCs

Devices	$V_{oc}(V)$	J _{sc} (mA/cm²)	FF%	PCE%
Α	0.57	14.77	34	2.8
В	0.57	8.22	43	2.0
С	0.54	6.67	51	1.83

Semitransparent OSCs:

Semitransparent OSCs: integrated OSC/OLED

ITO/OSC-ZnPc:C₆₀/interlayer/MOLED-Alq₃:C545

Org. Electron. 12 (2011) 1429

Summary

- Semitransparent OSCs
 - Optical admittance analysis
 - Transparent electrode and optical coupling
 - Multi-junction OSCs, WOLED lighting, optical sensors etc.
- Applications
 - Power generation windows
 - Architectural surfaces
 - Car windshield
 - Tension membrane

Thank you