Applying technology computer aided design (TCAD) to performance improvement of silicon wafer solar cells

Speaker: Dr. Fa-Jun MA

Time: 1200 – 1300

Date: 28th May 2015

Location: TETB LG07
Are we familiar with simulation?

- We all did simulation since childhood!
- With concrete objects, a child learns the world by simulation, where he or she
 - Role plays
 - Experiments
 - Discovers
 - …

Toy blocks for “little architects”
What is computer simulation?

- It is simulation carried out in a digital world!
- Computer simulation typically features
 - Advanced visualization
 - Artificial objects
 - Mathematical models
 - Numerical computation

The ultimate computer simulation to live in: The matrix!
Why do we need computer simulation?

- Computer simulation is widely applied to multiple fields.
- These facts may contribute:
 - A system is very complex with many variables.
 - A system contains random variables.
 - Simulation is more cost effective.
 - An experiment is too dangerous.
 - An experiment is impossible.
 - …
What is TCAD?

- TCAD is a bundle of up to 3D simulators for predicting semiconductor behaviors in:
 - Complex semiconductor fabrication processes
 - Complex electrical, optical and thermal device operations
 - Circuit simulation
- TCAD is matured enough to provide reasonable accuracy
Outline

- Enumeration of the benefits of TCAD involvement in solar research
 - Gaining insights
 - Making yourself understood
 - Revealing the underlying physics
 - Discovering new phenomena
 - Predicting performance improvement
 - Deterministic modelling
 - Inverse modelling
 - Compact modelling
 - …

- Summary
Advantages of commercial packages

- Examples in this talk were simulated with Sentaurus TCAD [1]
- The advantages are
 - Multi-dimension
 - Multi-physics
 - Multi-device
 - Multi-material
Abstract thinking may not help you gain insights as

- Partial differential equations are difficult to understand
- Many variables are interacting with nonlinear relationships
- A closed-form solution may not exist

Simulation is much easier and more helpful comparing to abstract thinking

Basic equations governing electrical behaviors of semiconductors

\[\nabla (\varepsilon_0 \varepsilon_s \nabla \phi) = - q (p - n + N_D - N_A) - \rho_{trap} \]

\[J_n = q \mu_n n E + q D_n \nabla n = q \mu_n \left(n E + \frac{kT}{q} \nabla n \right) \]

\[J_p = q \mu_p p E - q D_p \nabla p = q \mu_n \left(p E - \frac{kT}{q} \nabla p \right) \]

\[\frac{\partial n}{\partial t} = G_n - U_n + \frac{1}{q} \nabla J_n \]

\[\frac{\partial p}{\partial t} = G_p - U_p - \frac{1}{q} \nabla J_p \]
Example: Gaining insights of recombination mechanisms

Schematic representation of symmetrically passivated undiffused lifetime samples

Measured injection dependent effective lifetime curves of undiffused lifetime samples passivated by Al$_2$O$_3$ [1]

Example: Dominant recombination at high injection levels

A break down analysis of each recombination for p-FZ [1]

A break down analysis of each recombination for n-FZ [1]

Example: Dominant recombination at different wavelengths in solar cells

A break down analysis of each recombination at a wavelength range from 300 to 1200 nm for an Al full area BSF solar cell [1]

A break down analysis of each recombination at a wavelength range from 300 to 1200 nm for an Al local BSF solar cell [1]

Example: Dominant recombination at different bias in solar cells

A break down analysis of each recombination at a bias range from 0 to 700 mV for an Al full area BSF solar cell [1]

A break down analysis of each recombination at a bias range from 0 to 700 mV for an Al local BSF solar cell [1]

Making yourself understood

- Most people you interact are not experts in your research
- Presenting lines of theories may not be well conceived
- Advanced visualization from simulation helps spread your insights
The effective lifetime under low injection levels is not caused by enhanced surface recombination. How to prove?

- Measured injection dependent τ_{eff} (passivated by a-SiN$_x$:H) [1]
- Measured injection dependent τ_{eff} (passivated by Al$_2$O$_3$) [2]

Example: Field effect surface passivation

Simulated S_{eff} plotted against the injection level and the negative fixed charge density Q_f for an n-type ($N_D 2.5 \times 10^{15} \text{ cm}^{-3}$) lifetime sample.
Possible mechanisms – damaged surface region

Schematic sketch of damaged surface region and modeling [1-2]

Enhanced SRH recombination in damaged surface region under inversion

Possible mechanisms – edge recombination

- Edge recombination leads to enhanced recombination [1-2]

- Edge effect is accounted for using a 2D cross section with a cylindrical coordinate.

Edge recombination evaluation

- Edge lifetime τ_{edge} is defined as
 \[\tau_{\text{edge}} = \frac{\Delta n}{\frac{2\pi r W U_{\text{edge}}}{\pi r^2 W}} = \frac{\Delta n}{2 U_{\text{edge}} r} \]

- r: The radius of the simulation domain
 U_{edge}: The average edge recombination rate

- Edge recombination (worst scenario already): NOT the dominant mechanism for 5 inch and larger

Simulated edge lifetime vs. measured effective lifetime on n-type substrates
Surface damage and edge effect

- Surface damage:
 Very likely as effective lifetime results of both p-type and n-type lifetime samples were reproduced [1]

\[Q_{f, SiNx} = 4.0 \times 10^{12} \text{ cm}^{-2} \]
\[Q_{f, AlOx} = -4.5 \times 10^{12} \text{ cm}^{-2} \]
\[N_d = 1.0 \times 10^{15} \text{ cm}^{-3} \]
\[N_a = 3.4 \times 10^{15} \text{ cm}^{-3} \]

Measured effective lifetime curves are reproduced assuming surface damage

Revealing the underlying physics

- Experimental results may not provide many insights
- Simulation helps discover the underlying physics

Measured J_{0e} values as a function of boron emitter sheet resistance passivated with PECVD AlOₓ/SiNₓ dielectric stack [1]

Example: Chemical passivation analysis of p^+ emitters on planar

- With measured doping profiles and fixed charge density, S_{n0} can be determined for each emitter
- Chemical passivation of AlO on planar surface is independent of sheet resistance and surface doping concentration, same as reference 1
- How about that on a textured surface?

Extracted S_{n0} for various Q_f on planar wafers

Example: Chemical passivation analysis of p^+ emitters on textured wafers can be done by a combination of process and device simulations [1].

- Surface passivation study on textured wafers can be done by a combination of process and device simulations [1].

- Calibrate diffusion parameters using 1D simulation.

Process simulation was calibrated using 1D SIMS profiles.

Example: Chemical passivation analysis of p^+ emitters on textured

- Simulate boron profiles under the textured surface and verify them against measurement

Simulated 65 Ω/sq boron profile under the textured surface

The overlaid SEM and EBIC images of 65 Ω/sq underneath the textured surface
Example: Chemical passivation analysis of p^+ emitters on textured samples

- Extract S_{n0} for textured samples
- Chemical passivation of AlO is also independent of surface topology

\[Q_f = -(3 \sim 4) \times 10^{12} \text{ q/cm}^2 \]

Extracted S_{n0} on planar and textured wafers for the measured Q_f.

Sheet resistance [Ω/sq] vs. S_{n0} [cm/s]
Discovering new phenomena

- New phenomena may be discovered by
 - Pushing towards the limits
 - Changing structure
 - Changing the boundaries conditions
 - ...

A unit solar cell modeled in TCAD showing the doping distribution
Example: Field effect passivation

- Lower doping concentration is typically desired for emitters
- What if the doping concentration is very high? [1]

Schematic sketch of a uniform phosphorus emitter with a junction depth of 1 µm

Simulated J_{0e} values for phosphorus emitters ($X_j = 1$ µm)

Example: Field effect passivation

- Possible explanation: Strong field effect from doping suppresses not only surface but also bulk recombination [1]
 - Pros: Doping concentration in the emitter can be adjusted to achieve very low sheet resistance
 - Cons: Bandgap narrowing is strong
- Possible applications: Fingerless solar cell?
- Verification: No

Predicting performance improvement

- A solar cell may be well modelled with reasonable accuracy [1]
- Performance improvement can be readily predicted
 - Efficiency
 - J_{sc}
 - V_{oc}
 - FF

Predicting performance improvement

Possible improvements based on actions taken on the solar cell

<table>
<thead>
<tr>
<th>Actions</th>
<th>Efficiency [%]</th>
<th>V_{oc} [mV]</th>
<th>J_{sc} [mA cm$^{-2}$]</th>
<th>FF [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>18.28</td>
<td>633.0</td>
<td>36.7</td>
<td>78.7</td>
</tr>
<tr>
<td>B</td>
<td>18.68</td>
<td>641.8</td>
<td>36.7</td>
<td>79.3</td>
</tr>
<tr>
<td>C</td>
<td>18.76</td>
<td>644.5</td>
<td>36.75</td>
<td>79.2</td>
</tr>
<tr>
<td>D</td>
<td>18.84</td>
<td>646.7</td>
<td>36.79</td>
<td>79.2</td>
</tr>
</tbody>
</table>
Deterministic modelling

- Deterministic modelling applies to variation studies
 - Process variables
 - Device variables
 - …

A pitch variation study for an all-back-contact solar cell [1]

Inverse modelling

- Typical modelling
 - Known structure -> known characteristics

- Inverse modelling
 - Desired characteristics -> a new structure

Inverse modelling of a desired EQE curve
Compact modelling

- Feeding TCAD results to circuit design
 - Module simulation
 - Application simulation
 - …

Two intersection of the distributed circuit model in the direction perpendicular (upper) and parallel (right) to fingers, respectively [1]

Summary

- A few benefits of applying TCAD in solar research are highlighted with examples of my previous work.
- More benefits can be discovered later with your involvement.
Contacts

For email: F.Ma@unsw.edu.au
For chat: Blockhouse 211-10
Acknowledgements

- Deep appreciation to my PhD supervisors, A/Prof. Ganesh S. SAMUDRA, Dr. Bram HOEX, and Dr. Marius PETERS for encouragement and inspirations and for being my role models
- Thanks to the colleagues and students in SERIS for exciting discussions
- Thanks to Dr. Ziv HAMEIRI for the fruitful collaboration and the efforts on to bring me here!