

Russell Berrie Nanotechnology Institute Technion - Israel Institute of Technology

 Grand Technion
 Securing Israel today.

 Energy Program
 Transforming Israel's tomorrow.

The fundamental factors that determine the magnetooptical properties of colloidal quantum dots

<u>Efrat Lifshitz, Schulich Faculty of Chemistry, Russell Berrie</u> Nanotechnology Insitute and Solid State Institute, Technion, Israel

Characterizing electronic states, and identifying carriers' trapping sites and their influence on: optical transitions and charge transport properties Methods: Contactless magneto-optical methodologies

Quantum Dots (QDs)

stain growth

colloidal

Free standing

Wet Chemistry methods

spray

Nanocyrstals quantum dots (NQDs) active in the near infra-red

Applications: Photovoltiac, Gain device, optical switch

Content: What are the fundamental properties that control the magneto-optical properties of nanocrystals

- Internal or/and external properties (inorganic/organic omponents
- The strong/medium/weak confinement regimes
- Electronic band structure of core & core/shell nanocrystals
- Single and multiple-exciton
- Exchange interactions
- Hot carrier cooling
- Auger process and a way to mitigate it

Single dot measurements reveal knowledge about the fundamental points mentioned above

The role of ligands in colloidal quantum dots

Ligands' effect on hot carriers' cooling and transport properties

$$H = -\frac{\mathbf{h}^2}{2m_e} \nabla_e^2 - \frac{\mathbf{h}^2}{2m_h} \nabla_h^2 - \frac{e^2}{\varepsilon |\mathbf{r}_e - \mathbf{r}_h|}$$

Strong confinement: $R \ll a_{ex}$

- Confinement energy is much larger than the Coulomb interaction
- Coulomb interaction is treated as a perturbation

Confinement regimes

Intermediate confinement: $R \sim a_{ex}$

- Confinement energy is comparable with the Coulomb interaction
- When $m_h >> m_e$, hole moves in a mean potential created by strongly confined electron

Annu. Rev. Condens. Mat. Phys. 5, 285 (2014)

IETPL att 13 376

Weak confinement: $R >> a_{ex}$

- The internal motion of the exciton is bulklike (hydrogen-like spectrum)
- The exciton center-of-mass motion is confined within the nanocrystal

JETP Lett., 43, 376 (1986)

Excitonic fine structure

1Sh-1Se in II-VI semiconductors

M. Fernee

ODMR (PL-MR, or µPL-MR)

ELECTRONIC PROPERTIES OF QUANTUM DOTS WITH ALLOY COMPOSITION

PRB, 2012, 85, 075304; ACSNano 2010, 4, 6547; Small 2009, 5, 1674; Nanoscale, Review, 2013

Experimental Evidences

Direct view of magneto-optical properties by a single dot spectroscopy

 $< N >= P_{exc}\sigma j_p$

Counts s⁻¹

Cross Polarization Emission (B=0T)

Influence of ligands on the transport properties

STM Tip-DQD-Surface with Mechanical Coupling

1st Measurement

2nd Measurement

The NDR reveals the <u>molecule-like</u> nature of the DQD due to <u>destructive</u> <u>interference</u> in the <u>coherent coupling</u> to the <u>shared surface</u>.

Acknowledgement: > 30 graduate students, 10 postdocs (Most recent: G. Maikov, R. Capek, D. Yanover, A. Brusilovski, A. Sachshuik J. Tilchin, Eli Waldon, Maya Isakov, Gary Zaiats, Roni Pozner, Roman Vaxenburg, Nathan Grunbach) Funding: European FP7 NMP projects (x2), ISF, MOS, MOT, MOD, BSF, GIF, DIP, Bikura, ITN (Horizon2020)

Open positions: postdoctoral fellows and PhD students ssefrat@technion.ac.il

Negative Differential Resistance

Negative Resistance:

Increase in voltage results in a decrease in the current

Interesting synthesis issues: Shell growth via post deposition or cation exchange

