

eurac research

PV Performance and Reliability

David Moser

Eurac Research is a private research centre founded in 1992 in Bolzano (South Tyrol).

The Institute for Renewable Energy at Eurac Research

The Institute for Renewable Energy at Eurac Research conducts **applied research** on how to **produce energy** using **advanced energy systems** based on sustainable energy sources, how to **manage** them and **reduce** their consumption.

We study and execute **products**, **technologies** and **solutions** for private businesses, utilities, public administrations, researchers and professionals working in **several sectors**.

Sustainable Heating and Cooling Systems

Photovoltaic Energy Systems

Energy efficient buildings

Energy Retrofit of Historic Buildings

Urban and Regional Energy Systems

~ 100 collaborators

~ 50 projects and consultancies

7 labs

Photovoltaic Energy System group: Our topics

Quality and Sustainability of the PV sector

Solar Resource Assessment

Solar economics

Impact strategy

EUREC The Association of the European Renewable Energy Research Centres

European PV Technology and Innovation Platform Member of the steering committee

Contribution on ad-hoc groups: BIPV LCOE Grid integration Quality

Performance and Reliability **PVPS TASK 13 BIPV PVPS TASK 15** Performance and Reliability Quality PEARL PV **BIPV** EUROPEAN COOPERATION Grid integration IN SCIENCE & TECHNOLOGY WG1 TC82 Norms and standardisation COMITATO ELETTROTECNICO ITALIANO

The Quest for Quality

Does quality have a real impact on the LCOE?

ETIP PV Conference

QUALITY AND SUSTAINABILITY OF PV SYSTEMS CONFERENCE

3 May 2018 • BIP, Rue Royale 2-4, Brussels

- quality in PV has a leverage effect with the benefits that can clearly offset the added costs

bankability is a variable concept depending on stakeholders and context while quality is an absolute value
feedback loop from downstream to upstream is essential to define what is really needed in terms of quality checks of PV components

- large scale performance data are much needed to be able to better assess and improve the assumptions in business models

The journey: quality, performance and reliability

eurac research

Photovoltaic Energy Systems Group

IEA PVPS Task 13: ST2 activities

Technical risks framework

Tracking defects in the field

eurac research

* Source ACCELIOS 2012-2015 ** Mannheimer 2003-13

Risk assessment

SOLAR BANKABILITY

The risks stay with the owner/operator of the system. Risks can be vastly reduced and transferred

Technical risk framework

Α	Risk identification
В	Risk assessment
С	Risk management
D	Risk controlling

d	SOLA	R	
4	BAN	КАВІІ	

	Pro	Product Development		ent of PV Plants
	Product testing	Planning Tra	ansportation installation O&M	Decommissioning
Modules		·····	••••	
 Insulation test Incorrect cell soldering Undersized bypass diode Junction box adhesion Delamination at the edges Arcing spots on the module Visually detectable hot spots Incorrect power rating (flash test issue) Uncertified components or production line 	 Soiling Shadow diagram Modules mismatch Modules not certified Flash report not available or incorrect Special climatic conditions not considered (salt corrosion, ammonia,) Incorrect assumptions of module degradation, light induced degradation unclear Module quality unclear (lamination, soldering) Simulation parameters (low irradiance, temperature) unclear, missing PAN files 	 Module mishandling (glass breakage) Module mishandling (cell breakage) Module mishandling (defective backsheet) Incorrect connection of modules Bad wiring without fasteners 	 Hotspot Delamination Glass breakage Soiling Shading Snail tracks Cell cracks PID Failure bypass diode and junction box Corrosion in the junction box Corrosion in the junction box Theft of modules Module degradation Slow reaction time for warranty claims, vague or inappropriate definition of procedure for warranty claims Spare modules no longer available, costly string reconfiguration 	Undefined product recycling procedure

	Produc	Assessme	nt of PV Plants		
	Product testing				
Modules	Insulation test				
Inverter	 Incorrect cell soldering 				
Mounting stru	 Undersized bypass diode 				
Connection & distribution boxes	 Junction box adhesion Delamination at the 				
Cabling	edges Arcing spots on the 				
Potential equalization grounding, LPS	 Arcing spots on the module Visually detectable hot spots Incorrect power rating (flash test issue) Uncertimed components or 	List	of fail	ures	
Weather station, communication, monitoring					
Infrastructure & environmental influer	production line				
Storage system					
Miscellaneous					

Uncertainty

SOLAR

	Product Development			Assessme	nt of PV Plants	
		Planning				
Modules	····	- Soiling				
Inverter		Soling Soling Shadow diagram Madulaa miamatah				
Mounting structure		Modules mismatch Modules not certified Flock report pet				
Connection & distribution boxes		 Plash report not available or incorrect Special climatic conditions not 	-			
Cabling		considered (salt				
Potential equalization & grounding, LPS		 corrosion, ammonia,) Incorrect assumptions 	f fail	ures		
Weather station, communication, monitoring		of module degradation, light induced degradation unclear	-			
Infrastructure & environmental influence		 Module quality unclear (lamination, soldering) Simulation parameters 				
Storage system		(low irradiance, temperature)				
Miscellaneous		unclear, missing PAN files				

Uncertainty

SOLAR

	Product Development			Assessme	nt of PV Plants	
		Planning				
Modules						
Inverter		Shadow diagram	-			
Mounting structure		Modules not certified				
Connection & distribution boxes		 Flash report not available or incorrect Special climatic 	-			
Cabling		conditions not considered (salt				
Potential equalization 8 grounding, LPS		• Incorrect assumptions	f fail	ures		
Weather station, communication, monitoring		of module degradation, light induced degradation unclear				
Infrastructure & environmental influence	e	 Module quality unclear (lamination, soldering) Simulation parameters 				
Storage system		(low irradiance, temperature)				
Miscellaneous		unclear, missing PAN files	-			

Uncertainty

SOLAR

Uncertainty

SOLAR

	Product Development	Assessment of PV Plants
	Transportation / installation	
Modules	Module mishandling	
Inverter	(glass breakage) • Module mishandling	
Mounting structure	(cell breakage) • Module mishandling	
Connection & distribution boxes	(defective backsheet) • Incorrect connection of modules	
Cabling	• Bad wiring without fasteners	
Potential equalization 8 grounding, LPS	Lis	res
Weather station, communication, monitoring		
Infrastructure & environmental influence	e	
Storage system		
Miscellaneous		

Precursors

	Product Development			Assessment of	PV Plants
				O&M	
Modules				• Hotspot	
Inverter				Delamination Glass breakage	
Mounting structure				Soiling Shading	
Connection & distribution boxes				 Snail tracks Cell cracks PID 	
Cabling				Failure bypass diode and junction box	
Potential equalization & grounding, LPS	k	List	of k	Corrosion in the junction box Theft of modules	
Weather station, communication, monitoring				 Module degradation Slow reaction time for warranty claims, vague 	
Infrastructure & environmental influenc	e			definition of procedure for warranty claims	
Storage system				longer available, costly	
Miscellaneous				string reconfiguration	

Quantifiable impact

	Product Development			Assessment o	f PV Plants
				O&M	
Modules	(• Hotspot	
Inverter				 Delamination Glass breakage 	
Mounting structure				Soiling Shading	
Connection & distribution boxes				 Snail tracks Cell cracks PID 	
Cabling				Failure bypass diode and junction box	
Potential equalization & grounding, LPS	St	List	of fa	Corrosion in the junction box Theft of modules	
Weather station, communication, monitoring				 Module degradation Slow reaction time for warranty claims, vague or inappropriate 	
Infrastructure & environmental influenc	;e			definition of procedure for warranty claims	
Storage system				longer available, costly	
Miscellaneous				string reconfiguration	

Classification of technical risks

- Category of risk
- Common nomenclature
- Standardised quantification

Impact

- on uncertainty (exceedance Probability)
- on CAPEX
- on CPN (O&M)

Technical risk framework

Α	Risk identification
В	Risk assessment
С	Risk management
D	Risk controlling

FMEA approach

8/1/2019

Quantification of the economic impact of technical risks

Planning

Risks to which we can assign an uncertainty (e.g. irradiance)
 → Impact on financial exceedance probability parameters

O&M

 Risks to which we can assign a Cost Priority Number CPN (e.g. module and inverter failure) given in Euros/kWp/year
 → Impact on cash flow

Quantification of the economic impact of technical risks

31

Planning

• Risks to which we can assign an uncertainty (e.g. irradiance) → Impact on financial exceedance probability parameters

25

IEA INTERNATIONAL ENERGY AGENCY

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Meteo

databases

Calculation of uncertainty

User inputs

(assumptions)

Uncertainties in PV System Yield Predictions and Assessments

Christian Reise, Alexandra Schmid, Björn Müller, Daniela Dirnberger, Nils Reich, Giorgio Belluardo, David Moser, Philip Ingenhoven, Mauricio Richter, Joshua S. Stein, Clifford W. Hansen, Anton Driesse, Lyndon Frearson, Bert Herteleer

IEA PVPS Task 13, Subtasks 2.3 & 3.1 Report IEA-PVPS T13-12:2018 April 2018

IEA INTERNATIONAL ENERGY AGENCY

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Irradiance measurements and solar resource assessment: irradiance variability and trends

eurac

research

IEA PVPS Task 13, Subtasks 2.3 & 3.1 Report IEA-PVPS T13-12:2018 April 2018

Irradiance measurements and solar resource assessment: G_POA, decomposition and transposition models

		Hay	Isotropic	Muneer	Perez
nrmse	Erbs	28.8%	28.8%	28.9%	18.7%
	Ruiz_G0	5.1%	5.8%	5.3%	6.3%
	Ruiz_G2	5.4%	5.4%	5.6%	6.4%
	Skartveit	4.8%	6.6%	4.8%	5.2%
	Erbs	-14.7%	-14.8%	-14.7%	-9.7%
nmho	Ruiz_G0	1.1%	-1.3%	1.5%	2.7%
ninbe	Ruiz_G2	1.3%	-1.0%	1.7%	2.8%
	Skartveit	0.0%	-2.5%	0.4%	1.4%
	Erbs	17.3%	17.3%	17.3%	11.3%
	Ruiz_G0	3.4%	3.8%	3.5%	4.3%
nmae	Ruiz_G2	3.5%	3.6%	3.6%	4.3%
	Skartveit	3.0%	4.2%	3.1%	3.5%

PVPS

eurac research Temperature: environmental conditions and module temperature calculation

Maturi L., BiPV System Performance and Efficiency Drops: Overview on PV Module Temperature Conditions of Different Module Types, Energy Procedia 48 2014 1311-1319

IEA INTERNATIONAL ENERGY AGENCY

PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Performance Loss Rate

value

researc
PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

State of the art

resear

PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

State of the art

researe

PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

State of the art

researc

PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

State of the art

researc

Work in progress

Factors affecting the overall PLR

- Data quality
- Filtering
- Metrics

N, N

- Methodologies
- 3 approaches to assess PLR results
- <u>Shared</u> algorithms/filtering used on <u>shared</u> data
- <u>Confidential</u> algorithms/filtering used on <u>shared</u> data

research

Shared algorithms/filtering used on confidential data

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Work in progress

First step is to benchmark different existing methodologies to see

initial differences in the final results

eurac research -0.25 RSE Cede -0.50 -0.75 -1.00 -1.00 **Fraunhofer** ISE **University of Cyprus** Electromagnetics and Novel -1.25 Applications Lab **PVPS** TÜVRheinland

NATIONAL RENEWABLE ENERGY LABORATORY

researc

PVPS

Work in progress

Benchmark will be extended to several PV plants to understand shortcomings of certain methodologies

"Low" quality data	 pre-processed given PR/Power/Energy production Low resolution used only to compare PLR methods
"High" quality data	 Unfiltered PV system time series of high resolution can be used to compare performance models and filtering criteria

research

PVPS

Work in progress (Task 13)

Benchmark will be extended to several PV plants to understand shortcomings of certain methodologies

14 PV systems: high quality data
130 PV systems: low quality data

Is the selection of accurate methodologies dependent on the prevailing climate?

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Performance Loss Rates of PV systems of Task 13 database, Sascha Lindig, David Moser, Alan Curran and Roger French, IEEE PVSC Chicago 2019

research

P = A R L P V + W PVPS TASK 13

Package in R Functions:

PVPS

- Pre-defined filters
- Modelling of module temperature (NOCT and Sandia)
- PR calculation, temperature correction, monthly aggregation
- PLR calculation by applying STL and SLR
- Download of satellite irradiance & transposition to POA

Work in progress

researc

PVPS

PVPS

Work in progress

researc.

Quantification of the economic impact of technical risks

Shading problems due to nearby object / bad planning

Quantification of the economic impact of technical risks

161 deviations in 73 factory inspections carried out in around 2 years were identified, resulting in an average of 2.2 deviations per inspection

Many deviations are related to determination of Pn. Overestimation of output power is a problem

8/1/2019

50

Typical uncertainty range in LTYA

	Uncertainty	Range	Effect	Overall uncertainty range (1 STD)
Solar resource	Climate variability	±4% - ±7%	Insolation variability	\pm 4-7% (see 5.1.1 in [1])
	Irradiation quantification	±2% - ±5%		
	Conversion to POA	±2% - ±5%	POA transposition model	$\pm 2-5\%$ (see 5.1.1 in [1])
PV modeling	Temperature model	1°C - 2°C	Temperature coefficients and	\pm 0.02%/°C (5% relative error for crystalline silicon based
	PV array model	±1% - ±3%	temperature effects	modules) (lab measurements)
	PV inverter model	±0.2% - ±0.5%	Temperature deviation due to	$1-2 \circ C (\pm 0.5-1\%)$ (see 5.1.3 in [1])
Other	Soiling	±5% - ±6%	environmental conditions	
	Mismatch			Up to $\pm 2\%$ if environmental conditions are not included
	Degradation			
	Cabling		PV array and inverter model	$\pm 0.2\%$ to $\pm 0.5\%$ (see 5.1.3 in [1]) for the inverter model
	Availability			
				$\pm 1\%$ to $\pm 3\%$ for the PV array model
Overall uncertair	nty on estimated yield	±5% - ±10%		
			Degradation	$\pm 0.25-2\%$ (see 5.1.2 in [1], [2])
—			Shading	Site dependent

Typical uncertainty values (irradiance, temperature, soiling, shading, etc): $\pm 5-10\%$

Degradation	\pm 0.25-2% (see 5.1.2 in [1], [2])
Shading	Site dependent
Soiling	\pm 2% (see 5.1.3 in [1]) (Also site dependent)
Spectral Mismatch	\pm 0.01% - 9% (depending on PV technologies, [3])
(modelled)	
	\pm 1% to \pm 1.5% for c-Si
Nominal power	$\pm 1-2\%$
Overall uncertainty	\pm 5-10%

[1] D. Moser et al., "Technical Risks in PV Projects." Solar Bankability Deliverable www.solarbankability.com

[2] G. Belluardo, P. Ingenhoven, W. Sparber, J. Wagner, P. Weihs, and D. Moser, "Novel method for the improvement in the evaluation of outdoor performance loss rate in different PV technologies and comparison with two other methods," *Solar Energy*, vol. 117, pp. 139–152, Jul. 2015.

[3] G. Belluardo, G. Barchi, D. Baumgartner, M. Rennhofer, P. Weihs, and D. Moser, "Uncertainty analysis of a radiative transfer model using Monte Carlo method within 280–2500 nm region," *Solar Energy*, vol. 132, pp. 558–569, Jul. 2016

Risks to which we can assign an uncertainty (e.g. irradiance) → Impact on financial exceedance probability parameters

Objectives:

- More precise estimation of uncertainty in yield estimation
- Reduction of uncertainty

	σ (k=1)	P50 (kWh/kV/p)	P90 (kWh/kW ₂)	P90/P50 (P50 reference case)	
Ref. case (sum of squares)	8.7%	1445	1283	89%	
Low end scenario	4.6%	1445	1365	94%	
High end scenario	9.3%	1445	1273	88%	
Worst case scenario	16.6%	1445	1138	79%	
Worst case scenario (different mean value)	16.6%	1314	1034	72%	

22% difference in terms of yield used in the business model

53

SOLAR

BANKABILITY

Fraunhofer

eurac research Ekistica

M.G.LIGHTNING

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Task 13 YA exercise

ISE

TÜVRheinland

unec

Location: Bolzano, Italy Data available since August 2010 Technology: polycrystalline-Si

Real Yield Assessments (anonymized) provided by T13 partners will be analysed and benchmarked.

Uncertainty scenarios will be created to show impact on P90/P50

eurac

Yield assessment on selected sites

	Parameter	Assumption
	Location	Given Latitude/Longitude, tilt angle and azimuth
	Irradiance and transposition	Each independent YA will use their favourite database
	Temperature	Each independent YA will use their favourite database
	Technology and mismatch	Technology Given, each YA will apply their own considerations
	Inverter	Given
	Shading	Given shading diagram
	Soiling	Each independent YA will apply their own considerations
	Wind speed	Each independent YA will use their favourite database
	Long term insolation effects	Each independent YA will apply their own considerations
	Degradation	Each independent YA will apply their own considerations
	Snow loss / snow fall	Each independent YA will apply their own considerations
ď	Availability	Each independent YA will apply their own considerations
S	Uncertainties	Please provide uncertainties for each parameter (when possible) and for the yield (compulsory). Also please provide the type of assumed distribution for each parameter (when available) and for the Yield (compulsory)

eurac

research

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Initial Yield Assessment

	P50			P90	P90/P50
	[kWh/kWp]	σ (k=2)	σ (k=2)	[kWh/kWp]	ratio
Partner 1	1325	8.40%	111	1183	0.89
Partner 2	1095	7.00%	77	997	0.91
Partner 3	1406	7.30%	103	1274	0.91
Partner 4	1213	1.90%	23	1184	0.98

Derating factors Partner 3

Partner 4

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

LTYA / LTYP

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Benchmarking exercise

PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Uncertainty scenarios

PVPS

Based on the findings of the benchmarking exercise we will show how uncertainty plays a role for various parameters

eurac

research

Quantification of the economic impact of technical risks

O&M

 Risks to which we can assign a Cost Priority Number CPN (e.g. module and inverter failure) given in Euros/kWp/year
 → Impact on cash flow

Procedure for the calculation of a Cost Priority Number (CPN)

Creating a cost-based Failure Modes and Effects Analysis (FMEA) for PV

- a) Economic impact due to downtime and/or power loss (kWh to Euros)
- Failures might cause downtime or % in power loss
- Time is from failure to repair/substitution and should include: time to detection, response time, repair/substitution time
- Failures at component level might affect other components (e.g. module failure might bring down the whole string)
- b) Economic impact due to repair/substitution costs (Euros)
- Cost of detection (field inspection, indoor measurements, etc)
- Cost of transportation of component
- Cost of labour (linked to downtime)
- Cost of repair/substitution

Income reduction Savings reduction

Increase in maintenance costs Reduction of reserves

Technical Risks collection

CPN is given in Euros/kWp/year $CPN = C_{down} + C_{fix}$ It gives an indication of the economic impact of a failure due to downtime and investment cost

Tickets from O&M operators as corrective or periodic maintenance in paper or electronic form

detailed inspection

Technical Risks collection

CPN is given in Euros/kW/year

 $CPN = C_{down} + C_{fix}$

It gives an indication of the economic impact of a failure due to downtime and investment cost

	Total number of plants	Total Power [kWp]	Average number of years
TOTAL	772	441676	2.7
Components	No. tickets	No. Cases	No. Components
Modules	473	678801	2058721
Inverters	476	2548	11967
Mounting structures	420	15809	43057
Connection & Distribution boxes	221	12343	20372
Cabling	614	367724	238546
Transformer station & MV/HV	53	220	558
Total	2257	1077445	2373222

- Tickets from O&M operators from preventive and corrective maintenance

- Visual and detailed PV plant inspections

Definition of scenarios

• Never detected (CPN_{ndet})

Failure is undetected. Losses due to downtime over a time t_{td}

• Failure fix (CPN_{failfix})

Failure is detected. 1 Month of lead time to repair/substitution

 $0 \xrightarrow{1}_{t_{tr}/t_{ts}} \underset{t_{fix}}{12}$

- Failures are equally distributed over time
- No increase in Performance Losses over time
- Yield is considered as an average at national level (not site specific)
- The real scenario would be a combination of the two

Technical Risks collection: some statistics

	no. cases	no. components Years Share of failures		Share of failures	Share of failures/ year	
Modules	678,640	2,058,721	2.68	33%	12%	
Inverters	2,474	11,967	2.68	21%	8%	

Module	Failure share
Soiling	23.4%
Shading	16.8%
EVA discoloration	11.6%
Glass breakage	6.5%
PID	5.0%

Inverter	Failure share
Fan failure and overheating	21.8%
Fault due to grounding issues	4.9%
Inverter firmware issue	3.8%
Burned supply cable and/or socket	2.2%
Polluted air filter	3.3%
Inverter pollution	1.5%

O _{CPN}	from	the	cost-	based	FMEA
(powe	er los	s)			

occurrence	portfolio	affected	
modules	1.010%		14.958%
inverters	2.687%		22.046%
Mounting structure	0.206%		10.820%
Connection & Distribution boxes	0.145%		15.175%
Cabling	2.765%		6.855%
Transformer station & MV/HV	0.452%		0.393%

CPN Results - Components and Market Segments

• PV modules - Utility scale

- Highest risk consists of a group of installation failures (mishandling, connection failures, missing fixation, etc.)
- Variety of failures detected by different techniques (VI, IR, EL, IV-Curves)

CPN results - Comparison studies

• Affected components vs total components: CPN ratio

Failures calculated over the affected plants

CPN results - Comparison studies

• Some failures do not occur very often and are not equally spread over the portfolio but when they do, the economic impact is very high

CPN Results - Components and Market Segments

• Inverters

Technical risk framework

Risk mitigation

Mitigation Measure Approach

List of 8 defined MMs, their mitigation factors and affected parameters

Corrective measures

Component testing – PV modules	number of failures
Design review + construction monitoring	number of failures
Qualification of EPC	number of failures
Advanced monitoring system	time to detection
Basic monitoring system	time to detection
Advanced inspection	time to detection
Visual inspection	time to detection
Spare part management	time to repair/substitution

Impact of Applied Mitigation Measures

New CPN results of mitigation measure combinations for different cost scenarios compared to CPN without mitigation measures

Preventive measures have higher impact

From theory to practice

PV4.0: Use of Industry 4.0 and IoT logics in the PV sector

Different market segments

- Medium/Large PV systems: facilitate due diligence and hand-over in the secondary market / create a benchmark to compare PV plants
- Small PV systems: log every maintenance intervention to keep track of the health status of the plants and to facilitate O&M

The overall objective of the project is to develop a concept for the effective management of the activities of various stakeholders (asset managers, O&M companies, etc) inspired by Industry 4.0 and so to optimise the decision process minimising time and operational costs.

Before

.time to detection: no monitoring system or warning thresholds too broad or inaccurate (up to months to detect deviations)

.time to response: time required to organise repair or substitution. Time to understand the appropriate action.

.time to repair: assessment of situation only once on site

.time to detection: use of advance diagnostics and predictive monitoring / big data analytics

.time to response: use of self-learning Decision Support System (DSS) to suggest actions based on techno-economic analysis

.time to repair: use of DSS to optimise spare parts management

Develop a BIM inspired system to have a 3D visualisation of PV plants

01/06/2018 Module cleaned 01/08/2018 Glass breakage identified 15/08/2018 Module substituted (spare part)

Component log

Develop the PV4.0 hardware

Use of cloud based systems Use of wireless sensor networks

Select diagnostic tool: thermal image Select failure: hotspot

eurac

Develop models, algorithms and big-data back end for PV4.0

Develop the PV4.0 software

eurac research

"We ensure quality and sustainability in a PV driven energy transition"

david.moser@eurac.edu

Thank you!

- fb.com/euracresearch
- **9** @EURAC

www.linkedin.com/company/euracresearch/