Beyond 26% silicon solar cells in mass production:

poly-Si or a-Si contacts?

Daniel Macdonald, Sieu Pheng Phang, Tien Le, Rabin Basnet, Di Kang, Thien Truong, AnYao Liu and Andres Cuevas

School of Engineering, The Australian National University

Emergence of passivating contact devices

- p-PERC efficiency limited to 23-24%.
- Being replaced by passivating contact technologies:
 - n-TOPCon poly-Si
 - n-SHJ a-Si(H)
- Both can achieve > 25%
- n-TOPCon early leader compatibility with PERC equipment, lower capital costs.
- Which will win in the long run?

ITRPV Roadmap 2023

Features of TOPCon and SHJ devices

n-TOPCon:

- Oxide interlayer with doped poly-Si.
- High processing temps (> 800°C).
- Passivating contact on rear only...
- Diffused front side contacts high recombination but very transparent.
- Front junction.
- Rear side planar.

n-SHJ:

- **i-a-Si(H) interlayers** with doped a-Si (or μ c-Si/SiO_x).
- Low processing temps (< 250°C).
- Outstanding surface passivation both sides, even under contacts.
- Parasitic absorption in TCO and doped a-Si.
- Rear junction.
- Textured both sides.

Comparison of typical device parameters

Typical and champion large-area TOPCon and SHJ cells ^{1,2,3}.

- Lower J_{sc} in SHJ parasitic absorption in TCOs and a-Si films
- Lower V_{oc} in TOPCon front side recombination
- Lower FF in TOPCon front side sheet resistance

Aims of this work:

- Understand these optical, recombination and transport losses in detail.
- Evaluate **prospects for achieving >26%** in mass production at low cost.

Cell type	J _{SC} (mA/cm²)	V _{oc} (mV)	FF (%)	η (%)
TOPCon – industry state-of-the-art range ¹	40.6 - 41.6	717 - 722	83.9 - 84.5	24.6 - 25.2
TOPCon – champion – Jinko ²	42.2	719	83.7	25.4
SHJ - industry state-of-the-art range ¹	39.6 - 40.5	746 - 750	84.6 - 86.6	25.1 - 26.3
SHJ – champion – LONGi ³	41.5	751	86.1	26.8

¹ Di Yan *et al.* PIPV **31(4)**, 310-326 (2022). ² P. Zheng *et al.* submitted to IEEE JPV (2023). ³ Hao Lin *et al.* Nature Energy, published online May 2023.

Optical losses

Comparison of 25.4% TOPCon (Jinko) and 26.8% SHJ (LONGi) champion cells.

- Primary avoidable optical losses shown.
- **Parasitic absorption in front stack** larger for SHJ.
- Parasitic absorption at rear side similar for both.

5 P. Zheng *et al.* submitted to IEEE JPV (2023). Hao Lin *et al.* Nature Energy, published online May 2023.

Recombination losses – surface passivation

- Higher J_0 values on TOPCon front side cause V_{OC} loss ~20-30 mV.
- SHJ passivation on textured surfaces is truly remarkable!

Recombination losses - bulk

Quokka modelling for champion TOPCon and SHJ devices.

- Bulk SRH lifetimes > 5-10 ms required to achieve best V_{oc}.
- 15 ms and 25 ms used in models for 25.4% (TOPCon) and 26.8% (SHJ) cells.
- Is this easily achieved in practice?

Recombination losses - bulk

Bulk lifetimes for a standard n-type Cz ingot grown for the PV industry.

- Implied V_{oc} increased from ~725 to ~738 mV after phosphorus gettering.
- Gettering embedded in TOPCon process.
- Pre-gettering required for SHJ cells.

Recombination losses - bulk

What impurities are removed by the gettering?

- Cannot use the FeB or FeGa pairing method to identify Fe...
- However can use kinetics of lifetime increase during gettering process...
- Fe_i is still an important recombination source in n-type Cz, $[Fe_i] \sim 10^{11-12} \text{ cm}^{-3}$.

9

Transport losses – lateral resistance

- Very low sheet resistances in SHJ device due to TCOs with higher mobilities (*more typically $80 150 \Omega/sq$).
- TOPCon front side sheet resistance must be kept high to reduce recombination and remain optically transparent.

10 P. Zheng *et al.* submitted to IEEE JPV (2023). Hao Lin *et al.* Nature Energy, published online May 2023.

Transport losses – lateral resistance

- SHJ rear junction allows wafer bulk to contribute to front side collection.
- Provides parallel conduction path with sheet resistance ~ 50 Ω /sq to assist front TCO.
- By contrast, **all** front side collection in TOPCon cell has to pass through the light p+ region.

Impact of V_{OC} on FF

- In principle, higher V_{oc} allows higher ideal fill factor, FF₀.
- This effect is small compared to the difference in FF.
- Higher FF for SHJ is caused largely by improved lateral transport.
- Note ideality factor is below 1 for SHJ cell approaching Auger limit!

Achieving >26% in mass production – SHJ cells

SHJ cells have already shown potential for > 26% on large-area wafers.

Key challenges for low cost in mass production:

- Equipment capital costs can these come down quickly enough with scale?
- Low-cost TCOs with high transparency and mobility.
- Wafer pre-gettering required.

Cell type	J _{SC} (mA/cm²)	V _{oc} (mV)	FF (%)	η (%)
SHJ - industry state-of-the-art range ¹	39.6 - 40.5	746 - 750	84.6 - 86.6	25.1 – 26.3
SHJ – champion – LONGi ³	41.5	751	86.1	26.8

Achieving >26% in mass production – TOPCon cells

- TOPCon cells have also shown potential for > 26% on large area.
- What is required to achieve this in practice?

Date	Efficiency
July 2020	24.8%
October 2021	25.4%
April 2022	25.7%
October 2022	26.1%
December 2022	26.4%

Jinko Solar Champion TOPCon cells

Various Press Releases, Jinko Solar

Loss analysis of 25.4% TOPCon cell

- Quokka 3 simulations.
- Most electrical losses are on the front side:
 - Resistive losses in p+ layer
 - Recombination below and between front contacts.
 - Contact resistance.
 - Very restrictive trade-offs between these...
- Bulk defects still important

V _{oc} (mV)	J _{sc} (mA/cm²)	FF	efficiency
719	42.2	83.7	25.4%

Alternative architectures for poly-Si cells >26%

p+ poly-Si under the fingers

- Relaxes front side trade offs.
- Higher V_{oc}
- Requires p+ poly-Si on . texture...

- Contact fractions fully optimised.
- No poly-Si on texture.
- Complex processing...

Modelled example - p+ poly-Si under the fingers

Generated power

Efficiency improves from 25.4% to 26.6%:

- p+ poly-Si under the fingers.
- Intrinsic bulk lifetime (no defects).
- 20 micron fingers (print or plate).
 Significantly improved V_{oc} and FF.
 Can compete with SHJ for tandems?

p+ contact recombination	front of	-0.27	1.1	front p+ -0.01	
	PL '		4 E	2.	
p+ hole transport	(-0.96 mW/cm ²)	-0.38	1 6	(-0.58 mW/cm ²)0.18	
p+ non-contact recombination	8	-0.26		-0.28	
Front contact resistance	-0.05			-0.12	
Bulk recombination - intrinsic	-0.2	-0.27		-0.31	
Bulk carrier transport	-0.13	bulk (-0.56 mW/cm ²)		-0.11 (-0.43 mW/cm ²	
Bulk recombination - others	-0.15	(-0.00 1111/011)		0.00	
n+ poly-Si non-contact recombination	-0.10			-0.26	
n+ poly-Si contact recombination	-0.09			-0.01	
n+ poly-Si electron transport	-0.04	rear n+ poly-Si		-0.05 rear n+ poly-S	
Rear contact resistance	-0.03	(-0.26 mW/cm ²)		-0.05 (-0.37 mW/cm ²	
Metal grid resistance	-0.02			-0.05	
Cell efficiency	25.36%			26.57%	
	E		_ E		
2	5 26	27	28 26	27 28	
Power and free energy losses (mW/cm ²)					

27.16

28.00

29

V _{oc} (mV)	J _{sc} (mA/cm²)	FF	efficiency
719	42.2	83.7	25.4%
738	42.4	85.0	26.6%

Difficulties with p+ poly-Si contacts...

Poorer surface passivation than n+ poly-Si... ~20mV lower V_{oc}

R Basnet et al., upcoming publication

Difficulties with p+ poly-Si contacts...

• Even more so on textured surfaces...

R Basnet et al., upcoming publication

 J_0 (fA/cm²)

P and B behaviour at oxide interface

- P is more soluble in c-Si than SiO_x piles-up at interface.
- B is more soluble in SiO_x accumulates in the oxide, causing damage.
- Effect amplified on textured surface where oxide is locally thin/stressed.
- Alternatives oxy-nitride interlayers, Ga-doping, pinhole oxides...

Conclusions

Both TOPCon and SHJ technologies can achieve >26% in production

Key challenges for TOPCon

- ~ 26% possible with current architecture.
- > 26.5% will require p+ poly-Si contacts to increase V_{oc}
- Poly under the fingers, or IBC...

Key challenges for SHJ

- Potential for > 26.5% with current architecture.
- Capital costs have to be reduced further (about 2.5 3 times higher than TOPCon).
- Development of cost-effective TCOs that are sufficiently transparent and conductive.

Thank you!

This work has been supported by the Australian Renewable Energy Agency (ARENA)

