## Up-conversion for Crystalline Silicon Photovoltaics: Realistic Efficiency Limits and Enhancement in Photonic Structures

**Craig Johnson** 



Supervisor: Gavin Conibeer Co-supervisors: Peter Reece Supriya Pillai



**SPREE Public Seminar, 27 September 2012** 

#### **Presentation outline**

- Solar cell efficiency limits
- Up-conversion (UC) for Third-Generation PV
- UC efficiency limits
- UC model with generalised 'realistic' c-Si solar cell
- UC model with generalised 'realistic' UC material
- Implications for experimental study
- UC enhancement in multilayer photonic structures
- Erbium-doped porous Si as a UC material

### **Detailed balance analysis**

Shockley-Queisser insight:

**perfect** solar cell at steady state is a black body emitter obeying Planck's (generalised) law

 $J_{rad} = \frac{q\varepsilon_c}{4\pi^3 h^3 c^2} \int_{E_g} \frac{E^2}{\exp\left(\frac{E-qV}{kT_c}\right) - 1} dE$  $J = J_{sun} - J_{rad}$ For a known **Overall limiting** solar flux  $J_{sun}/q$ , **J**<sub>rad</sub> efficiency  $\eta_{SQ}$  is limiting given by photocurrent sun  $J_{mpp}V_{mpp}/P_{in}$ may be found SC for any applied voltage V:

27/09/2012

## AM1.5G limiting efficiency

Perfect cell: sharp absorption cutoff at  $E_q$ .

Assuming cell is at ambient temperature with nondegenerate doping,  $\eta_{SQ} = f(E_g)$ .



From Green, PIP 2011 (DOI 10.1002/pip.1156)

# **UC for Third Generation PV**

- Sub-band-gap transmission major contributor to efficiency suppression
- c-Si: 19.1% loss of solar power density in AM1.5G spectrum
- Lowering band gap to collect more photons reduces V<sub>oc</sub>
- Si band gap nearly ideal  $(\eta_{\rm SQ} \sim 33\%)$
- Up-conversion (UC): modify incident spectrum to convert sub-band-gap photons into absorbable photons



#### **Up-conversion concept**

Exploit sub-band-gap spectrum: break SQ limit Extend SC spectral response without altering voltage Luminescent layer behind conventional SC

Two-photon absorption leads to single photon emission (e.g., rare earth ions, metallorganic dyes)

Advantage: device based on 'standard' commercial SC!



#### Ideal UC-PV eq. ckt. model (after Trupke, 2002)



Four single-threshold 'solar cells' acting as black-body converters (from SQ model)

Current and voltage are constrained in equivalent circuit

> Energy band diagram of system above

## Ideal UC-PV efficiency



c-Si SC limiting efficiency increases from **33%** to almost **40%** under AM1.5G

#### **Standard assumptions**

Extension of SQ analysis to four-diode model:

1. Solar cell absorption is perfect

(1 for  $E > E_{g,i}$  and 0 for  $E < E_{g,i}$ )

2. Perfect radiative efficiency of all components

- 3. UC layer absorbs over entire sub-band-gap region
- 4. Absorption of two small-band-gap cells is selective (non-overlapping)

Real solar cells do not behave according to 1 and 2... what is impact of 'non-ideal' absorption as seen in real device?

### **Optical properties of Si**

Tabulated complex refractive index for planar intrinsic Si linked to absorption via Fresnel equations:

$$r(\lambda) = \frac{1 - [n_{\rm Si}(\lambda) - i\kappa_{\rm Si}(\lambda)]}{1 + [n_{\rm Si}(\lambda) - i\kappa_{\rm Si}(\lambda)]};$$
  
$$R(\lambda) = |r(\lambda)^2|$$

$$\alpha(\lambda) = \frac{4\pi\kappa_{\rm Si}(\lambda)}{\lambda}$$

$$A(\lambda) = [1 - R(\lambda)](1 - e^{-\alpha(\lambda) \cdot d})$$

Refractive index data from Green and Keevers, 1995.

27/09/2012

#### Realistic generalised solar cell absorption

Absorption expression can be modified to account for:

- Relevant wafer thickness: 250 µm
- 'Reasonable' broadband ARC properties (modify *R*)
- 'Weak' surface texturing/light trapping—allows transmission of NIR light (modify *d*)
- Free-carrier absorption for 10<sup>17</sup> cm<sup>-3</sup> doping (i.e., absorption that does not contribute to photocurrent)

$$A = [1 - R](1 - e^{-(\alpha + \alpha_{fc})d})$$

$$\alpha_{fc} = \kappa_{fc} \lambda^2 N$$

=3.3×10<sup>-18</sup> cm<sup>2</sup>/µm<sup>2</sup> (Kerestes *et al*., 2011)

#### **ARC effect**

#### Broadband scaling of R by a factor $\rho$ simulates ARC



#### Light trapping (no FCA, $\rho = 0.9$ , $d = 250 \mu m$ )



#### **Free carrier absorption**



FCA will have major impact on UC-PV efficiency if base doping is high!

## Light trapping/FCA interaction



Even for moderate base doping FCA is considerable when path length is long

#### **Absorption spectra compared**



27/09/2012

#### How does model stack up?

 $\eta_{SQ}$  of generalised realistic cell vs. radiative efficiency



#### **Results**

#### Ideal Si SC, Ideal UC

| Solar cell peak efficiency | 33% |
|----------------------------|-----|
| UC-PV peak efficiency      | 40% |
| Relative increase          | 21% |

| Realistic Si SC, Ideal UC<br>SC radiative eff. = 100% |       |  |
|-------------------------------------------------------|-------|--|
| Solar cell peak efficiency                            | 30.5% |  |
| UC-PV peak efficiency                                 | 38.5% |  |
| Relative increase                                     | 26%   |  |

| Realistic Si SC, Ideal UC<br>SC radiative eff. = 10% |     |  |
|------------------------------------------------------|-----|--|
| Solar cell peak efficiency                           | 26% |  |
| UC-PV peak efficiency                                | 32% |  |
| Relative increase                                    | 23% |  |

27/09/2012

#### **Realistic UC layers: Erbium-based UC**



#### **Erbium-based UC**



- Er-based UC is:
- not broad band
- not selective
- not complete

## Idealised Er absorption (per ion)



For A = 0.5 per ion, all photons in Er range absorbed. Value represents an average over these wavelengths.

# Idealised Er absorption (per ion)



For A = 0.5 per ion, all photons in Er range absorbed. Value represents an average over these wavelengths.

#### **Idealised Er emission**



Emissivity is taken to be twice the absorptivity of each Er ion. All other detailed balance constraints still enforced.

# Modified result, all concentration ratios (SC rad. eff. = 10%, UC system rad. eff. = 10%)



#### **Absorption in NaYF<sub>4</sub>:Er**



#### **Downshifting/Sensitisation**



e.g., PbS QDs: see Liu et al., 2008.

# Broadened absorption spectrum (per Er/sensitiser chromophore)



# Modified result, all *C*, downshifting (SC rad. eff. = 10%, UC system rad. eff. = 10%)



Craig Johnson SPREE Public Seminar

## Summary

- No reports of increased c-Si SC efficiency from Er-based UC-PV: Modified detailed balance model illustrates why
- Modest one-sun limits resulting from this model:
  - ~1.5% absolute increase for 100% QE, perfectlyabsorbing UC layer (no downshifting)
  - ~4% absolute increase for layer w/ perfect downshifting
- Full-concentration limits:
  - No downshifting: UC benefit same for all concentrations (for 100% EQE)
  - Downshifting: benefit improves to ~5.5% absolute (compare to ~6% for ideal c-Si UC-PV, non-ideal SC)
- Effective UC-PV design for c-Si must incorporate **absorption enhancement**, photon downshifting
- (Situation even worse for realistic radiative properties!)

#### Methods of absorption enhancement



#### Erbium-doped porous silicon (PSi:Er<sup>3+</sup>)

Experimental basis for UC measurements

- Formed from c-Si by anodic etching in HF
- Porous but stable c-Si skeleton with large internal surface area

Pore diameter ~ 100nm PSi offers:

- tunable refractive index (inv. prop. to porosity)
- formation of high-quality, uniform, thick layers
- fabrication of stacked multilayer films
- host for electromigration of dopant species
- speedy, simple prototyping (room temp., no vacuum)

#### **PSi:Er UC-PL results**

- Electroplating from saturated ErCl<sub>3</sub>/ethanol solution into single thick PSi layer (43% porous, 5.5µm thick)
- Annealed 30 min at 900°C in O<sub>2</sub>:N<sub>2</sub> 20 min at 1100°C in N<sub>2</sub>
- Distinctive Er UC emission spectrum for 1550-nm excitation
- RBS shows high Er concentration in similar films (not all active)

While not very efficient, a basis for investigating photonic UC enhancement



# **PSi Distributed Bragg Reflector**

#### 30 bilayers

![](_page_32_Picture_2.jpeg)

- Optical properties also tunable by post-fab treatment, e.g., oxidation.
- Design of structures relies on suitable effective medium approximations.

- High-quality optical structures (dielectric mirrors, microcavities etc.) may be fabricated by temporal modulation of etching current
- Periodic porosity

   → periodic refractive index

![](_page_32_Figure_7.jpeg)

# Band structure of dielectric multilayers (infinite DBRs)

- Bragg reflector is a 1D photonic crystal—has a 'band structure'
- Refractive index contrast gives rise to photonic band gap
- Near edge of BZ, group velocity  $v_g = d\omega/dk$ approaches zero

![](_page_33_Figure_4.jpeg)

#### **Finite DBRs**

- Reflectivity spectra simulated for PSi DBRs with 0.5/0.7, band edge at 1550 nm: strong Er absorption line
- Transfer matrix electromagnetic calculation (Yeh 1988)

![](_page_34_Figure_3.jpeg)

#### **Field enhancement**

What happens to electric field near band edge, i.e., for low  $v_a$ ?

![](_page_35_Figure_2.jpeg)

27/09/2012

# Modelling Er in DBR slow modes

![](_page_36_Figure_1.jpeg)

#### **Effective absorption coefficient**

![](_page_37_Figure_1.jpeg)

### Effect of band edge position

How do optical properties vary as incident angle

changes? Blue shift in interference features/band edge position

Broad region of enhanced absorption

Polarisation splitting

Tradeoff between slow-light enhancement and suppression in band gap

![](_page_38_Figure_6.jpeg)

# Fabrication of PSi:Er DBR

# What is the effect of pumping Er near band edge of real structure? $1_{\theta=27^{\circ}}$

- Trial-and-error fabrication to position band edge near 1550nm (laser wavelength, Er absorption line)
- Major challenge: oxidation, annealing required to activate Er, suppress refractive index
- These steps severely degrade structure!

![](_page_39_Figure_5.jpeg)

#### 'DBR42N':

- Etched from 1.5–2-mΩ-cm p-type (B-doped) <100> Si wafer
- Room temperature, 25% HF
- Etching currents 5.6mA and 99.75mA  $\rightarrow$  50%- and 70%-porous layers
- Layer etching times 58.878s and 9.4s
- 30 bilayers

# **Angular-dependent UC-PL**

![](_page_40_Figure_1.jpeg)

#### 27/09/2012

#### **Normalised UC-PL variation**

- Average of 5 spots
   0.5mm apart
- PL trend tracked per PL peak
- Each trend normalised to weakest PL = 1 (38°)

![](_page_41_Figure_4.jpeg)

### **Correspondence with model?**

#### Consider strong 550-nm peak:

![](_page_42_Figure_2.jpeg)

- Model shows absorption peaks for reflectivity troughs (makes sense)
- BUT absorption clearly not only dependent on R
- Experimental results show similar trend but R 'smeared out'
- Laser samples sub-mm point while reflectivity samples large area

### **Conclusions I**

- Detailed balance analysis not the best means for predicting exact operational characteristics of real devices...
- ...but placing simple non-ideal constraints on DB model allows straightforward comparison to ideal case.
- Extended classic 'Trupkean' UC DB analysis to new AM1.5G spectrum, generalised non-ideal c-Si solar cell (ARC, LT, FCA)
- Ideal UC: relatively bigger bang for buck for 'realistic' c-Si (26%/23% vs. 21%)
   © Original Artist Reproduction rights obtainable from

But 'realistic' c-Si must have poor LT properties... false economy?

![](_page_43_Picture_6.jpeg)

## **Conclusions II**

- Idealised UC in DB model vastly different to real UC material
- Er-based UC phosphors: narrow-band, poor absorbers
- These properties can be approximately incorporated into DB model
- Limiting efficiency of realistic c-Si cell only boosted by ~1.5% by *perfectly absorbing, perfect QE* Er-like UC material (regardless of *C*)
- Improves to 4% (C=1) or 5.5% (C=46200) with downshifting
- No wonder there are no reports of c-Si UC-PV enhancement!
- Want impressive results? Use bad thin-film SCs!

## **Conclusions III**

- Substantial absorption enhancement achievable in principle in 1D photonic crystals
- Band-edge modes where v<sub>g</sub>→0 produce high internal field intensity (tens of times)
- Average effective Er absorption coefficient may be increased over bulk value
- Attempts to fabricate real structures: non-monotonic UC-PL intensity with variation in band edge position
- Promising for narrow-band enhancement, but still inconclusive!

#### Thank you!

#### References

- A. Atre and J. Dionne, *Journal of Applied Physics* 110, 034505, 2011.
- M. A. Green, *Progress in Photovoltaics* 2011, DOI: 10.1002/pip.1156
- M. A. Green and M. J. Keevers, *Progress in Photovoltaics* 3, 189–192, 1995.
- C. Kerestes *et al.*, *Progress in Photovoltaics* 2012, DOI: 10.1002/pip.1232
- C. Liu *et al.*, *Journal of Non-Crystalline Solids* 354, 2–9, pp. 618–623, 2008.
- T. Trupke et al., Journal of Applied Physics 92, 4117–4122, 2002.
- P. Yeh, Optical Waves in Layered Media, Wiley 1988.