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Presentation outline 

• Solar cell efficiency limits 

• Up-conversion (UC) for Third-Generation PV 

• UC efficiency limits 

• UC model with generalised ‘realistic’ c-Si solar cell 

• UC model with generalised ‘realistic’ UC material 

• Implications for experimental study 

• UC enhancement in multilayer photonic structures 

• Erbium-doped porous Si as a UC material 
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Detailed balance analysis 
Shockley-Queisser insight:  

perfect solar cell at steady state is a black body emitter 

obeying Planck’s (generalised) law 
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For a known 

solar flux Jsun/q, 

limiting 

photocurrent 

may be found 

for any applied 

voltage V: 

Overall limiting 

efficiency ηSQ is 

given by  

JmppVmpp/Pin 



AM1.5G limiting efficiency 
Perfect cell: sharp absorption cutoff at Eg. 

Assuming cell is at ambient temperature with non-

degenerate doping, ηSQ = f(Eg). 
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From Green, PIP 2011 (DOI 10.1002/pip.1156) 



UC for Third Generation PV 

• Sub-band-gap transmission 

major contributor to efficiency 

suppression 

• c-Si: 19.1% loss of solar power 

density in AM1.5G spectrum 

• Lowering band gap to collect 

more photons reduces Voc  

• Si band gap nearly ideal  

(ηSQ ~ 33%) 

• Up-conversion (UC):  

modify incident spectrum to 

convert sub-band-gap photons 

into absorbable photons 
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Up-conversion concept 
Exploit sub-band-gap spectrum: break SQ limit 

Extend SC spectral response without altering voltage 

Luminescent layer behind conventional SC 

Two-photon absorption leads to single photon emission 

(e.g., rare earth ions, metallorganic dyes) 

Advantage: device based on ‘standard’ commercial SC! 
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Ideal UC-PV eq. ckt. model  
(after Trupke, 2002) 
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Four single-threshold 

‘solar cells’ acting as 

black-body converters 

(from SQ model) 

 

Current and voltage 

are constrained in 

equivalent circuit 

Energy band 

diagram of 

system above 



Ideal UC-PV efficiency 
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c-Si 
c-Si SC limiting 

efficiency 

increases from 

33% to almost 

40% under 

AM1.5G 



Standard assumptions 

Extension of SQ analysis to four-diode model: 

1. Solar cell absorption is perfect  

(1 for E > Eg,i and 0 for E < Eg,i) 

2. Perfect radiative efficiency of all components 

3. UC layer absorbs over entire sub-band-gap region 

4. Absorption of two small-band-gap cells is selective  

(non-overlapping) 

 

Real solar cells do not behave according to 1 and 2… 

what is impact of ‘non-ideal’ absorption as seen in real 

device? 
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Optical properties of Si 

27/09/2012 Craig Johnson SPREE Public Seminar 9 

Tabulated complex refractive index for planar intrinsic Si 

linked to absorption via Fresnel equations: 

 

Refractive index data from Green and Keevers, 1995. 



Absorption expression can be modified to account for: 

• Relevant wafer thickness: 250 μm  

• ‘Reasonable’ broadband ARC properties (modify R) 

• ‘Weak’ surface texturing/light trapping—allows 

transmission of NIR light (modify d) 

•  Free-carrier absorption for 1017 cm-3 doping  

(i.e., absorption that does not contribute to 

photocurrent) 

Realistic generalised solar cell absorption 

27/09/2012 Craig Johnson SPREE Public Seminar 10 

=3.3×10-18 cm2/µm2 

(Kerestes et al., 2011) 



ARC effect 
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Broadband scaling of R by a factor ρ simulates ARC   



Light trapping 
(no FCA, ρ = 0.9, d = 250µm) 
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Free carrier absorption 

FCA will have major impact on UC-PV efficiency if base 
doping is high! 
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Light trapping/FCA interaction 

Even for moderate base doping FCA is 

considerable when path length is long 
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Absorption spectra compared 
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How does model stack up? 
ηSQ of generalised realistic cell vs. radiative efficiency 
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(Still a bit too high, but not bad) 

(=1/radiative eff.) 



Results 
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Ideal Si SC, Ideal UC 

Solar cell peak efficiency 33% 

UC-PV peak efficiency 40% 

Relative increase  21% 

Realistic Si SC, Ideal UC 

SC radiative eff. = 100% 

Solar cell peak efficiency 30.5% 

UC-PV peak efficiency 38.5% 

Relative increase  26% 

Realistic Si SC, Ideal UC 

SC radiative eff. = 10% 

Solar cell peak efficiency 26% 

UC-PV peak efficiency 32% 

Relative increase  23% 



Realistic UC layers:  

Erbium-based UC 
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Erbium-based UC 
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Er-based UC is:  

• not broad band  

• not selective 

• not complete 



Idealised Er absorption (per ion) 
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For A = 0.5 per ion, all photons in Er range absorbed. 

Value represents an average over these wavelengths. 



Idealised Er absorption (per ion) 
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For A = 0.5 per ion, all photons in Er range absorbed. 

Value represents an average over these wavelengths. 



Idealised Er emission 
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Emissivity is taken to be twice the absorptivity of each Er ion.  

All other detailed balance constraints still enforced.   



Modified result, all concentration ratios 
(SC rad. eff. = 10%, UC system rad. eff. = 100%) 
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Absorption in NaYF4:Er 

27/09/2012 Craig Johnson SPREE Public Seminar 24 



Downshifting/Sensitisation 
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e.g., PbS QDs: see Liu et al., 2008. 



Broadened absorption spectrum  

(per Er/sensitiser chromophore) 
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Modified result, all C, downshifting 
(SC rad. eff. = 10%, UC system rad. eff. = 100%) 

27/09/2012 Craig Johnson SPREE Public Seminar 28 



Summary 
• No reports of increased c-Si SC efficiency from Er-based 

UC-PV: Modified detailed balance model illustrates why 

• Modest one-sun limits resulting from this model: 

 ~1.5% absolute increase for 100% QE, perfectly-

absorbing UC layer (no downshifting) 

 ~4% absolute increase for layer w/ perfect downshifting 

• Full-concentration limits: 

 No downshifting: UC benefit same for all concentrations  

(for 100% EQE) 

 Downshifting: benefit improves to ~5.5% absolute 

(compare to ~6% for ideal c-Si UC-PV, non-ideal SC) 

• Effective UC-PV design for c-Si must incorporate 

absorption enhancement, photon downshifting 

• (Situation even worse for realistic radiative properties!) 
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Methods of absorption enhancement 
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Erbium-doped porous silicon (PSi:Er3+) 

Experimental basis for UC measurements 

Formed from c-Si by anodic etching in HF 

Porous but stable c-Si skeleton with large internal surface 
area 

Pore diameter ~ 100nm 

PSi offers: 

• tunable refractive index (inv. prop. to porosity) 

• formation of high-quality, uniform, thick layers  

• fabrication of stacked multilayer films 

• host for electromigration of dopant species 

• speedy, simple prototyping (room temp., no vacuum) 
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PSi:Er UC-PL results 
• Electroplating from saturated ErCl3/ethanol solution into single thick 

PSi layer (43% porous, 5.5µm thick)  

• Annealed 30 min at 900°C in O2:N2, 20 min at 1100°C in N2 

• Distinctive Er UC emission spectrum for 1550-nm excitation 

• RBS shows high Er concentration in similar films (not all active) 
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While not very 

efficient, a basis for 

investigating photonic 

UC enhancement  



PSi Distributed Bragg Reflector 
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• High-quality optical 

structures (dielectric 

mirrors, microcavities etc.) 

may be fabricated by 

temporal modulation of 

etching current  

• Periodic porosity  

→ periodic refractive index 

• Optical properties also tunable by 

post-fab treatment, e.g., oxidation. 

• Design of structures relies on suitable 

effective medium approximations.  

30 bilayers 



Band structure of dielectric multilayers 

(infinite DBRs) 

• Bragg reflector is a 

1D photonic 

crystal—has a  

‘band structure’ 

• Refractive index 

contrast gives rise to 

photonic band gap 

• Near edge of BZ, 

group velocity  

vg = dω/dk 

approaches zero 
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Finite DBRs 
• Reflectivity spectra simulated for PSi DBRs with 0.5/0.7, 

band edge at 1550 nm: strong Er absorption line 

• Transfer matrix electromagnetic calculation (Yeh 1988) 
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Field enhancement  
What happens to electric field near band edge, i.e., for low vg? 
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‘Squeezing’ of the mode results in intense standing wave! 



Modelling Er in DBR slow modes 
Gaussian fit to empirical Er α 

profile (NaYF4:Er, Shalav) 
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Modified refractive index 

profile (N=10) 

‘Effective absorption coefficient’ 

Absorption spectrum 



Effective absorption coefficient 
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Broad band average Narrow band average 



Effect of band edge position 
How do optical properties vary as incident angle 
changes? 
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Blue shift in 

interference 

features/band 

edge position 

Broad region of 

enhanced 

absorption   

Tradeoff between 

slow-light 

enhancement and 

suppression in band 

gap 

Polarisation 

splitting 



Fabrication of PSi:Er DBR 
What is the effect of pumping Er near band edge 

of real structure? 
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• Trial-and-error fabrication to 

position band edge near 1550nm 
(laser wavelength, Er absorption line)  

• Major challenge: oxidation, 

annealing required to activate Er, 

suppress refractive index 

• These steps severely degrade 

structure! 

‘DBR42N’: 

• Etched from 1.5–2-mΩ-cm p-type (B-doped) <100> Si wafer 

• Room temperature, 25% HF  

• Etching currents 5.6mA and 99.75mA  50%- and 70%-porous layers 

• Layer etching times 58.878s and 9.4s 

• 30 bilayers 



Angular-dependent UC-PL 
Vary angle of excitation  

 vary effective band edge position  

 variation in UC-PL intensity? 

 agrees w/ expected absorption variation? 
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• UC-PL at same angles shown above 

• λex = 1550nm, P = 200mW 

• Single spot, av. of 5×2.5-s acquisitions 

• Note relative intensity of 980-nm peak 

• Peak also cut off 



Normalised UC-PL variation 

• Average of 5 spots 

0.5mm apart 

• PL trend tracked 

per PL peak 

• Each trend 

normalised to 

weakest PL = 1 

(38°) 
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Correspondence with model? 

Consider strong 550-nm peak: 
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• Model shows absorption peaks for reflectivity troughs (makes sense) 

• BUT absorption clearly not only dependent on R 

• Experimental results show similar trend but R ‘smeared out’  

• Laser samples sub-mm point while reflectivity samples large area 

 



Conclusions I 
• Detailed balance analysis not the best means for predicting 

exact operational characteristics of real devices… 

• …but placing simple non-ideal constraints on DB model 

allows straightforward comparison to ideal case. 

• Extended classic ‘Trupkean’ UC DB analysis to new AM1.5G 

spectrum, generalised non-ideal c-Si solar cell  

(ARC, LT, FCA) 

• Ideal UC: relatively bigger bang for buck for ‘realistic’ c-Si 

(26%/23% vs. 21%) 
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But ‘realistic’ c-Si must 

have poor LT 

properties… 
false economy? 



Conclusions II 
• Idealised UC in DB model vastly different to real UC material 

• Er-based UC phosphors: narrow-band, poor absorbers 

• These properties can be approximately incorporated into DB 

model 

• Limiting efficiency of realistic c-Si cell only boosted by ~1.5% 

by perfectly absorbing, perfect QE Er-like UC material 

(regardless of C) 

•  Improves to 4% (C=1) or 5.5% (C=46200) with downshifting  

• No wonder there are no reports of c-Si UC-PV enhancement! 

• Want impressive results? Use bad thin-film SCs! 
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Conclusions III 
• Substantial absorption enhancement achievable in principle in 

1D photonic crystals 

• Band-edge modes where vg0 produce high internal field 

intensity (tens of times) 

• Average effective Er absorption coefficient may be increased 

over bulk value 

• Attempts to fabricate real structures: non-monotonic UC-PL 

intensity with variation in band edge position 

• Promising for narrow-band enhancement, but still 

inconclusive! 
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Thank you! 
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