# **Economics of Microgrids**

Presentation at UNSW, Oct 5<sup>th</sup> 2017 Chris Amos

## The Network Today





### Assumptions of Regulatory Framework

- Framework assumes top to bottom flow
- Requires that a retailer is appointed for each connection point
- There are exemption guidelines, but they contemplate embedded networks
- Network built with redundancy on the basis of peak usage (i.e. those short periods where supply peaks to meet demand peaks)

#### Possible Future



# Potential Scenario: Large Volumes of Distributed Storage

#### Hypothetical

- What if there was enough distributed storage to supply all electricity demand for 4 or 5 hours?
- What if there was enough distributed renewable energy that produced enough electricity to cancel out the need for centralised generation?
- Is centralised economic dispatch required?
- Is N-1 or N-2 planning required?
- Retailer and Network business models?

# Some Problems with Relying on Price



#### Poor Correlation of Pool Price and Network Costs



## Distribution Regulation: The Challenge of Sunk Costs





Graph retrieved on 13 July 2017 from https://kellyandjenny.wordpress.com/2012/01/15/natural-monopoly/

# Grid topology evolution





28 October 2016

Mahesh P. Bhave, maheshbhave@gmail.com

25

#### What Used to be Immutable Truths

- Supply and demand must balance instantaneously as stockpiling is not economically feasible
- Central co-ordination is required to keep the grid stable frequency control/electrical inertia
- AC wins due to ease of transforming between voltages to reduce losses, and DC breaking being difficult
- Natural barrier to entry
  - Can't compete with the cost effectiveness achieved from scale economies
  - Capital intensive in nature
- Consumer behaviour has tended to be economically inelastic, so does not respond to peak pricing

### The New Paradigm

#### The economics of scale are falling away

- Optimization for capacity, or sizing of generation sources
- Optimization of operations
- Pro forma cash analysis with assumptions
- Demand management, especially in emerging economies

### Alternate Paradigms / Fractionation / Productisation

- DC in the home, savings from not having to do multiple transformations
- Niche local electricity solution for specific applications such as pumps
- Stand alone rural microgrids
- Federation of microgrids with decentralised control

### Alternate Paradigms / Fractionation / Productisation - 2

- How committed is the government committed to a centralised dispatch market?
- Break up the network businesses into microgrids and auction access rights to provide infrastructure and energy supply service
  - completely dismantle existing market structure
- Parallels to teleco break ups, in the 1990s, but does electricity lend itself to 'productisation' like mobile devices?? Probably not, but watch this space.

#### **Evaluating Market Opportunities**

#### Technical Feasibility

- Matching/optimising generation mix, storage & loads
- Grid and end user integration
- Siting

#### Economic Feasibility

- Identifying Costs and Revenues
- Does project exceed current cost of energy for end users?

#### Financing

- Capital Stack and investors' hurdle rate
- Ownership / Management structure
- Repayment structure

#### Consideration of Longer Term Liabilities

- Battery warranties Buyer Beware
- Consumer expectations of High 9s Reliability
  - Particularly relevant for stand alone systems
- End of Life
  - Enduring obligations to supply???
  - Replacement CAPEX. What about possible AUGEX??
  - Cost to dispose of batteries
  - Environmental risks from battery chemistry?
  - PV long term performance degradation
  - Regulation of microgrids likely to develop in the future, what overhead in cost will that bring??

#### Battery Warranties (from 12 months ago)

Information on this slide retrieved from web article by:

Ronald Brackels, retrieved 14 June 2017 from https://www.solarquotes.com.au/blog/new-powerwall-warranty/

- Mercedes-Benz Energy Storage Home: 80% of nominal capacity after 8,000 cycles.
- SimpliPhi PHI3.4 Smart-Tech Battery: 80% of nominal storage capacity after 10,000 cycles.
- Enphase AC Battery: 95% of nominal storage capacity after 7,300 cycles.
- LG Chem RESU: 80% nominal storage capacity after 2,625 cycles.
- GCL E-KwBe: 80% of nominal storage capacity after 2,000 cycles
- Tesla Powerwall 1: 60% of nominal storage capacity after 2,368 cycles