HERE COMES THE SUN

UNSW SPREE Symposium | Bonna ewman

innovation for life

GLOBAL ADOPTION OF EVS

Source: IEA Global EV Outlook 2019

Development in the number of electric vehicles registered in The Netherlands (fleet)²

Source: Netherlands Enterprise Agency

Development in the number of charging points 12

2019 WORLD SOLAR CHALLENGE RESULTS

4th Place: Challenger Class

1st Place: Cruiser Class

12th Place: Challenger Class

17th Place: Challenger Class

) TNO UNITS

TNO ENERGY TRANSITION – SOLAR INNOVATION THROUGHOUT THE PV VALUE CHAIN

Application Module System Raw materials Cell innovation for life

TNO AUTOMOTIVE RESEARCH

Develop, apply and demonstrate new innovative technologies and methodologies that improve safety, efficiency & sustainability of vehicles

CURRENT SOLAR EV COMPANIES

Lightyear CO

So why hasn't it been done before?

TECHNICAL CHALLENGES FOR PV ON CARS

- Maximum performance (Max. sun-facing area ~5 m²)
 - High efficiency
 - Curved surface
 - Good shade and dynamic performance
- Lightweight for vehicle efficiency
- Aerodynamics and Aesthetics
- Materials, coatings, and layout
- Reliability (15 years)
 - High wind and speed damage
 - Vibrations
- Safety

CONDUCTIVE BACK CONTACT FOIL

- Conductive back-sheet foil
 - Copper as conductive layer → less Ag on cell
 - Patterning by chemical etching or milling
- Contact cell to foil through conductive adhesive
 - Printed on foil
- Isolation cell from foil by encapsulant
 - Holes only at contacts

CONDUCTIVE BACK CONTACT FOIL

- High throughput, highly-automated back contact module technology
- Adaptable for all back contact technologies
 - IBC & MWT
 - Diffused, TopCON, and HJT cells
- Low temperature conductive adhesive process
- Easily adapted on-the-fly for flexible designs
- Excellent CtM due to plenty of interconnection material

TNO SOLUTIONS: TESSERATM

- Solution for shade linearity
- Small cells made from larger commercial cells
- Developed for back contact cell technology
- Conductive foil used to create specific circuitry
 - Tunable voltage and current
 - Integration of other components in foil

Low-current diode

FLEXIBILITY AND AERODYNAMICS

 $R_{curv.} = 12.5 cm$

$$\Delta$$
eff = -0.9%

AESTHETICS

UNITED NETWORK STUDIO

http://www.dsd-pv.nl/

1ST GENERATION PROTOTYPE

- Full-size car roof (more than 90% active area)
- > 19% active area efficiency under STC, indoor laboratory irradiation*
- > 86% cell-to-module performance

LIGHTYEAR P-ZERO

HIGH EFFICIENCY - PEROVSKITE/C-SI TANDEM TECHNOLOGY

Progress of 4T perovskite/cSi cell efficiency from combined ECN/Solliance efforts (blue)

6x6 inch² perovskite module made at Solliance¹

¹https://solliance.eu/nl/solliance-sets-14-5-cell-performance-record-on-largeperovskite-modules/, April 9th, 2018

SAFETY & RELIABILITY TESTING

- Compliance testing for automotive and solar combined
 - Crash/Functional safety testing
 - Electrical safety (< 60V)</p>
 - Pedestrian impact testing
 - Vibration and shock testing
 - Extended accelerated temperature and environmental testing
 -) IEC 61217 & 61730

REQUIREMENTS FOR NORMAL AUTOMOTIVE HOODS

- Mechanical stiffness
 - High global stiffness (bending, torsion)
 - Dynamic stiffness (vibrations)
- Controllable deformation in frontal collisions
- Energy absorption at head impact
- Low weight

PEDESTRIAN SAFETY

IEA PVPS TASK 17 - LEADING ACTIVITY 1.2

- Identifying benefits of VIPV:
 - CO₂ reduction
 - Range extension reduce anxiety
 - Economic benefit saved fuel / grid charging
- Quantifying the benefits with an Energy Flow Model
 - Modelling in Europe
 - Expansion to global cases (including Australia, with the help of UNSW)

SOLAR VEHICLE ENERGY FLOW MODEL

Car Energy Demand Model

Battery & Charging Model

- Number of Charging Moments (CMs)
- CO₂eq Savings
- Economic Savings

INITIAL CASE STUDIES - DETAILS AND ASSUMPTIONS

PV Energy Yield Model – BIGEYE:

- ~750Wp, Horizontal, No shading,
- · Locations: Netherlands, Sweden, Spain

Energy required by car:

- km driven based on driving profile
- Car efficiency specifications [kWh/100km] based on road type city, highway, combined
- Comfort control use of heater or AC (f(T_{amb}))

Battery performance:

- Capacity
- Losses in charge controller in and out of the battery

Grid charging rate:

fixed slow rate

VARIABLE DRIVING PROFILE - ~11,000 KM / YEAR

- Daily commute
- 20km to and from work + variability
- > 5 days / week
- 46 weeks / year + 6 weeks holiday
- Variable road types
- 11,085 km/year

BENEFITS SUMMARY (EUROPE)

Location	Energy demand [kWh/year]	Potential PV Generation (% of energy dem.)	Reduced Grid Dependence (CMs)	Savings (/year)	CO2 (/year)
Maastricht	1486	53%	56%	€ 234	273 kg
Madrid	1518	80%	32%	€ 354	410 kg
Stockholm	1537	48%	62%	€ 218	254 kg

Simple driving profile – 10k km/year commuting
Conservative charging strategy
Grid charging cost - € 0.30 / kWh
CO₂ emission factor, grid consumption - 0.5 kg-CO₂/kWh

EFFECT OF SOLAR CHARGING (NL)

No PV:

59 grid charge/yr

33 grid charge/yr

PV:

VEHICLE IRRADIANCE TEST SETUP

DATA COLLECTED

SOLAR POTENTIAL & DYNAMIC ENVIRONMENTS

CONCLUSIONS

EFFECT OF 3D SHAPE

Flat module

Effect of 3D shape

PASAN corrects irradiance for distance and Θ to have uniform irradiance distribution

3D shape has longer distance and higher angle Θ compared with flat module

IMPACT OF BATTERY SIZE

- Sensitivity to battery size
- Charging moments are reduced with increased battery capacity

