

Recent Results of the International Technology Roadmap for Photovoltaics (ITRPV)

8th Edition, March 2017

A. Metz, M. Fischer, J. Trube

PV seminar at UNSW Sydney, March 23rd, 2017

VDMA | ITRPV 2017 Page 1 | 15 March 2017

Outline

- 2. PV Learning Curve and Cost Considerations
- 3. **ITRPV** Results 2016
 - Wafer Materials, Processes, Products
 - Cell Materials, Processes, Products
 - Module Materials, Processes, Products
 - Systems
- 4. Summary and Outlook

VDMA | Author ITRPV 2017 Page 2 | 15 March 2017

Outline

1. ITRPV Introduction

- 2. PV Learning Curve and Cost Considerations
- 3. ITRPV Results 2016
 - Wafer Materials, Processes, Products
 - Cell Materials, Processes, Products
 - Module Materials, Processes, Products
 - Systems
- 4. Summary and Outlook

VDMA | Author ITRPV 2017 Page 3 | 15 March 2017

ITRPV - Methodology

VDMA

Working group today includes 40 contributors from Asia, Europe, and US

Review of data

Preparation of publication

→ regional chairs

Chairs EU
Chairs PRC
Chairs TW
Chairs US

Next ITRPV edition

Parameters in main areas are discussed → Diagrams of median values

VDMA | Author ITRPV 2017 Page 4 | 15 March 2017

ITRPV 8th Edition 2017 – some statistics

Silver amount per cell

Edition	8 th	7 th
Contributors	40	33
Figures	60	50

Wafer thickness (multi)

Prediction quality since 2009:

Silver consumption trend → well predicted and realized (Silver availability depends on **world market**)

Wafer thickness trend → bad predicted and no progress (Poly-Si price depends on **PV market** development)

VDMA | ITRPV 2017 Page 5 | 15 March 2017

Outline

₩ ITRPV

2. PV Learning Curve and Cost Considerations

3. ITRPV – Results 2016

1. ITRPV Introduction

- Wafer Materials, Processes, Products
- Cell Materials, Processes, Products
- Module Materials, Processes, Products
- Systems
- 4. Summary and Outlook

VDMA | ITRPV 2017 Page 6 | 15 March 2017

PV learning Curve

Shipments /avg. price at years end:

2016: 75 GWp / 0.37 US\$/Wp

o/a shipment: ≈ 308 GWp o/a installation: ≈ 300 GWp

300 GWp landmark was passed!

LR 21.5% (1976 2016)

dramatic price drop due to market situation

→ Comparable to 2011/2012, but faster

VDMA | Author ITRPV 2017 Page 7 | 15 March 2017

Price considerations

- → reduction 01/2011 → 01/2016: ≈ 64 %
- → reduction 01/2016 → 01/2017: ≈ 36 % (reduction 01/2011 → 01/2012: ≈ 40 %)

Dramatic price drop during 2nd half of 2016

→ Market driven drop

Module price break down [US\$/Wp]

- → Poly-Si share increased again
- **→ High pressure on module manufacturers**

VDMA | Author ITRPV 2017 Page 8 | 15 March 2017

Outline

1. ITRPV Introduction

- 2. PV Learning Curve and Cost Considerations
- 3. ITRPV Results 2016
 - Si / Wafer Materials, Processes, Products
 - Cell Materials, Processes, Products
 - Module Materials, Processes, Products
 - Systems
- 4. Summary and Outlook

VDMA | Author ITRPV 2017 Page 9 | 15 March 2017

Silicon – Materials: Poly Si Feedstock Technology

Trend: Share of poly-Si feedstock technology

Poly Si price trend:

E 2012: 20 US\$/kg

02/ 2016: ≈14 US\$/kg 02/ 2017: ≈16 US\$/kg

→ oversupply situation of 2016 relieved

- → Siemens process will remain mainstream FBR shows potential for cost reduction
- → FBR share will be increased moderately w/ new capacity
 (2016 values in line w/ IHS Markit)

Other technologies (umg, epi growth, ..)

→ Not yet mature but available

VDMA | Author ITRPV 2017 Page 10 | 15 March 2017

Wafer – Processes: wafering technology (1)

Trend: Kerf loss / TTV

diamond wire sawing advantage:

→ enable faster kerf reduction
No big change in thickness variation is expected

Trend: throughput crystallization/ wafering

→ Throughput increase in crystallization/wafering will continue

VDMA | Author ITRPV 2017 Page 11 | 15 March 2017

Wafer – Processes: wafering technology (2)

For mc-Si

diamond wire wafering now mainstream for mono-Si

 \rightarrow Throughut 2x – 3x faster than slurry based

For mc-Si change to diamond wire is ongoing

→ main challenge: texturing

VDMA | Author ITRPV 2017 Page 12 | 15 March 2017

Wafer – Processes: texturing of mc-Si wafers

Trend: market share of mc-Si texturing technologies

- Acidic texturing is:
 - → mature and high throughput process
 - → changes in "standard" will apear
- Next step:
 - → wet nano texturing, esp. for diamond wire
- RIE share is expected to increase "but"
 - → no cost efficient alternative

→ Wet processing remains mainstream in mc-Si texturing

VDMA | Author ITRPV 2017 Page 13 | 15 March 2017

Wafer - Product: Wafer thickness trend

Mono-Si wafer: thickness reduction starts

Still no progress in mc-Si thickness reduction

- →180 µm mc-Si preferred thickness since 2009
- →Thickness reduction expected to start for mono-Si
 - cost reduction potential
 - diamond wire will support

New module technologies should enable thickness reduction

Wafer – Product: market share of material types

Trend: share of c-Si material types

- → Casted material is still dominating today with > 60%
- → Mono share is expected to increase (driven by n-type)

casted-Si domination is not for ever:

- → Trend of last years will continue
- Casting technology:
 - → HP mc-Si will replace standard mc-Si
 - → no "come back" of mono-like expected
- Mono technology:
 - → n-type material share will increase
 - → n- + p-type market share today ≈ 35% (2016 values are in line w/ IHS Markit)
- p-type material is expected to stay dominant
 - → mainly due to progress in LID regeneration

VDMA | ITRPV 2017 Page 15 | 15 March 2017

Wafer – market share of wafer dimensions (new)

Fast switch to new format:

- → New mainstream: 156.75 x 156.75 mm²
- → Larger formats are upcoming

Trend: mc-Si

Transition to new format in 2017

- → Expected new mainstream: 156.75 x 156.75 mm²
- → Larger formats may occur after 2020

VDMA | ITRPV 2017 Page 16 | 15 March 2017

Outline

- 2. PV Learning Curve and Cost Considerations
- 3. ITRPV Results 2016
 - Si / Wafer Materials, Processes, Products
 - Cell Materials, Processes, Products
 - Module Materials, Processes, Products
 - Systems
- 4. Summary and Outlook

VDMA | Author ITRPV 2017 Page 17 | 15 March 2017

Cell – Materials: Silver (Ag) per cell

Ag will stay main metallization in c-Si technology

No break through for lead free pastes so far

→ Market introduction depends on performance

VDMA | Author ITRPV 2017 Page 18 | 15 March 2017

Cell – Processes: cell production tool throughputs

Trend: tool throughput increase + synchronization of frontend/backend

- → chemical processes, progessive scenario
- ---chemical processes, evolutional scenario
- → themal processes, progressive scenario
- -thermal processes, evolutional scenario
- → metallisation & classification processes, progressive scenario
- -metallisation & classification processes, evolutional scenario

Wet benches are leading today with > 7800 wf/h

→ Throughput increase continues

Challenge: increase throughput + Improve OEE

Two throughput scenarios:

Progressive = new high throughput tools

Evolutionary = continuous improvement of existing tools (debottlenecking, upgrades...)

VDMA | Author ITRPV 2017 Page 19 | 15 March 2017

Cell – Processes: in line monitoring in cell production (new)

Trend: in-line process control backend/test

- -automatc optical inspection (AOI) after front/back silver & back Aluminum print
- electroluminescence (EL) imaging
- -infrared (IR) imaging for hotspot detection

AOI is widely used in printing 2016: 70% Inspection at cell testing:

- → EL use will expand (currently 5% only)
- → IR inspection is not widely used

Trend: in-line process control frontend

SiNx quality control has constant share – 50%

- → Incoming wafer inspection will exceed 30% after 2021
- → Emitter sheet rho in-line control will increase

VDMA | Author ITRPV 2017 Page 20 | 15 March 2017

Cell – processes: c-Si metallization technologies

Front side metallization technologies

Rear side metallization technologies

Screen printing remains main stream metallization technology

- → Plating is expected for rear and front side
- → For rear side PVD methods may appear

VDMA | Author ITRPV 2017 Page 21 | 15 March 2017

Cell – processes: finger width / number of bus bars / bifaciality

VDMA

Trend: Finger width / alignment precision

Front side grid finger width reduction continues

2016: < 50µm reached!

- → Enables Ag reduction, requires increase of number of busbars
- → 4BB are mainstream 3 BB will disappear

Alignment precision will improve to <10µm @3 sig.

- → Selective emitters + Bifacial cells require good alignment
- → Bifacial cells will increase market share

Trend: market share of bifacial cells

VDMA | Author ITRPV 2017 Page 22 | 15 March 2017

Cell – processes: recombination current densities

Trend: J0_{bulk}, J0_{front}, J0_{rear}

J0_{bulk}

will be further reduced by optimizing crystallization

2010 2016

 \rightarrow p-type mc-Si: 650 \rightarrow 240 fA/cm²

further reductions will appear:

2016 2017 2027

 \rightarrow p-type mc-Si: 240 \rightarrow 180 \rightarrow 32 fA/cm²

 \rightarrow p-type mono-Si: 125 \rightarrow 100 \rightarrow 30 fA/cm²

 \rightarrow n-type mono-Si: 25 = 25 \rightarrow 15 fA/cm²

JO_{front} / JO_{rear}

- \rightarrow Further reductions by > 50% to $< 50 \text{ fA/cm}^2$
- → p-type improvements are limited at the front side (i.e. need of improved diffusion / new pastes)
- → Wide use of rear side passivation concepts
- → p- type: reducing recombination losses is on a good way
- → n-type: overcomes p-type bulk material limitations

VDMA | Author ITRPV 2017 Page 23 | 15 March 2017

Cell – processes: emitter formation for low J0_{front}

Trend: emitter sheet resistance

Essential parameter for J0front

- → 95...100 Ω/□ are standard today
- \rightarrow Increase to 135 Ω/\Box is predicted
- → Challenge for tools and front pastes

Trend: emitter formation technologies

Mainstream: homogenous gas-phase diffusion

- → selective doping: etch back or laser doping
- → Ion implant stays niche

VDMA | Author ITRPV 2017 Page 24 | 15 March 2017

Cell – processes: technology for low J0_{rear}

Trend: rear side passivation technologies

Rear side passivation is mandatory for PERC

- → PECVD AlOx will stay mainstream
- → ALD will hold up to 10 %
- → SiONx will disappear

ITRPV prediction for J0_{rear} were good

- BSF cannot deliver required low J0_{rear}
- PERC takes over
- competing technologies in PERC
 - → PECVD Al2O3 + capping
 - → Al2O3 ALD + capping
 - → PECVD SiONx/SiNy etc.

VDMA | Author ITRPV 2017 Page 25 | 15 March 2017

Cell – Products: cell technologies / cell efficiency trends

Trend: market share of cell concepts

2016: PERC ≈15% (in line w/ IHS Markit)

→ p-type PERC outperforms

Trend: stabilized cell efficiencies;

PERC is gaining market share (20% 2017)

- → BSF share is shrinking
- → Back contact + HJ: slow increasing share
- → Si tandem: under development

p-type mono PERC will reach n-type performance mc-Si PERC is about to outperform mono BSF

- → n-type IBC + HJ for highest efficiency applications
- → stabilized >21% p-type mono PERC is in production

VDMA | Author ITRPV 2017 Page 26 | 15 March 2017

Outline

1. ITRPV Introduction

- 2. PV Learning Curve and Cost Considerations
- 3. ITRVP Results 2016
 - Si / Wafer Materials, Processes, Products
 - Cell Materials, Processes, Products
 - Module Materials, Processes, Products
 - Systems
- 4. Summary and Outlook

VDMA | Author ITRPV 2017 Page 27 | 15 March 2017

Module - Materials: front cover material

Trend: market share of front cover material

Trend: lifetime of AR coating

AR coated glass is mainstream

AR coating lifetime will increase to 25 years

VDMA | Author ITRPV 2017 Page 28 | 15 March 2017

Module – Processes: interconnection technology

Trend: cell interconnection technology

100% 90% 80% 70% 60% 50% 40% 30% RPV 2017 20% 10% 0% 2016 2017 2019 2021 2024 2027 ■ lead-containing soldering ■ lead-free soldering ■ conductive adhesive

Expanding market share: lead free soldering + conductive adhesives

Trend: cell connection material

Ribbons/wires will remain most widely used cell connection material

VDMA | Author ITRPV 2017 Page 29 | 15 March 2017

Module – Products: module power outlook

Trend: cell to module power ratio (CTM)

CTM will increase to > 100%

→ Acidic texturing has higher CTM

Trend: module power of 60 cell (156x156mm²)

60 cell modules 2017:

Mono p-type PERC: 300 W are standard Multi p-type PERC: 285 W are common

VDMA | Author ITRPV 2017 Page 30 | 15 March 2017

Module – Products: framed modules and J-Boxes

Trend: share of frameless c-Si modules

2021

Plastic

2024

10%

2016

2017

■ Aluminum

Trend: share of smart J-Boxes

Al-frames will stay mainstream

→ frameless for niche markets

Standard J-Box remains mainstream

→ Smart J-Boxes for niche applications

VDMA | Author ITRPV 2017 Page 31 | 15 March 2017

Module – Products: module size

Trend: share of cell dimensions

100% 90% 80% 70% 60% 50% 40% 30% 2017 20% 10% 0% 2016 2017 2021 2024 2027 2019 ■ full cell half cell quarter cell

Trend: share of module size (full cell)

Full cell will remain main stream half cell implementation started! quarter cells – currently a niche

Big is beautiful: **72 cell module share will increase** 60 cell modules → mainstream until 2020

VDMA | Author ITRPV 2017 Page 32 | 15 March 2017

Module – Products: module reliability (new)

Trend: warranty conditions and degradation for c-Si modules

Degradation per year during performance waranty [%]

Product warranty will remain 10 years

Performance warranty 2024+: 30 years

degradation: Initial / linear/year

2016: 3.0 % / 0.7%

2017: 2.5 % / 0.68%

2019+: 2.0 % / 0.68%

2021+: 2.0 % / 0.60%

VDMA | Author ITRPV 2017 Page 33 | 15 March 2017

Outline

1. ITRPV Introduction

- 2. PV Learning Curve and Cost Considerations
- 3. ITRVP Results 2016
 - Si / Wafer Materials, Processes, Products
 - Cell Materials, Processes, Products
 - Module Materials, Processes, Products
 - Systems
- 4. Summary and Outlook

VDMA | Author ITRPV 2017 Page 34 | 15 March 2017

Systems – Balance of system (BOS) for power plants

Trend: BOS in Europe and US

94% 15% 84% 15%

Module costs still significant

Costs in Asia are assumed to be significant lower

VDMA | Author ITRPV 2017 Page 35 | 15 March 2017

Trend: BOS in Asia

Systems – Levelized Cost of Electricity (LCoE)

Trend: LCoE progress – a minimum approach

System prices

→ 2016: 970 \$ / kWp

 \rightarrow 2027: <680 \$ / kWp

LCoE

→ 2016: 3.9 8 \$ct/kWh (GER avg. 7.7 \$ct**)

→ 2027: 2.7 5 \$ct/kWh are ralistic

System live times of 25 years are assumed

Next steps to further reduce LCoE:

- → extended service live to 30 years (supported by performance warranty trend)
- → further efficiency improvements
 - + cost down measures

LCoE depends strongly on local conditions

- → ~5.7/US\$ct/kWh lowest auction bidder in GER 2016** (avg. 7.7 \$ct)
- → ~2.42 US\$ct/kWh possible near Abu Dhabi* today

VDMA | Author ITRPV 2017 Page 36 | 15 March 2017

^{*} http://www.pv-tech.org/news/jinkosolar-in-deal-to-build-1.2GWp-solar-plant-in-Abu-Dhabi

^{**} http://www.sunwindenergy.com/photovoltaics/danish-bidders-win-cross-border-pv-tender

Outline

1. ITRPV Introduction

- 2. PV Learning Curve and Cost Considerations
- 3. ITRVP Results 2016
 - Si / Wafer Materials, Processes, Products
 - Cell Materials, Processes, Products
 - Module Materials, Processes, Products
 - Systems

4. Summary and Outlook

VDMA | Author ITRPV 2017 Page 37 | 15 March 2017

Outlook: in detail view at PV learning curve

1976-2016: LR= 22.5% 2006-2016: LR= 39.0%

ITRPV finding 2010-2016:

Wp learning ~ 7% (continually)
per piece learning ~26% (market influenced)

→ Learning was and will always be a combination of:

efficiency increase

- + continues cost reduction per piece
- = cost reduction of PV generated electricity

But how will PV proceed in future?

Approach: logistic growth

 $0.1 \rightarrow$ exemplified by nature:

VDMA | ITRPV 2017 Page 38 | 15 March 2017

Spreading of PV – like a plants life: An Experiment

PV experiment: Investigation of the growth of a Tomato plant*

→ watching milestones in a tomato plant's live

* Plant grown in Thalheim April – July 2016

VDMA ITRPV 2017 Page 23 | 10/26/2016

Spreading of PV – like a plants life: An Experiment

PV experiment: Investigation of the growth of a Tomato plant*

→ PV is starting

Parameter set: G = 1.12 m k = 0.07; c = 67 d

PV is at the beginning

ITRPV industry outlook:

- → future PV Installation and
- → future PV production requirements

VDMA | Author: ITRPV 2016 Page 23 | 15 March 2017

^{*} Plant grown in Thalheim April – July 2016

PV market trend until 2050: logistic growth

VDMA

Scenario 3 "high": 9.2 TWp/ 14.3 PWh (< 10 % primary energy)

Approach: 3 scenarios for 190 different countries in 4 regions Asia / America / Africa / EU

ITRPV finding:

- Shipments until 2016 slightly above all scenarios
- Annual PV market:335 GWp/a to 800 GWp/a
- → Replacement rate = key to overcome down cycles
- → Evolutionary technology development works for all scenarios

VDMA | ITRPV 2017 Page 41 | 15 March 2017

Summary

- Silicon PV will remain a fast developing technology
- Further reductions of c-Si PV manufacturing cost are possible
 - → without sacrificing quality and reliability
 - → cell efficiency improvements will support the cost reduction
- Silicon PV will significantly contribute to future power supply
- We are just at the beginning of PV-market development

VDMA | ITRPV 2017 Page 42 | 15 March 2017

Thank you for your attention!

Contact us:

jutta.trube@vdma.org

Full version of 7th edition available at:

www.itrpv.net

VDMA | ITRPV 2017 Page 43 | 15 March 2017